DC-8/DC-8 PRO/DC-8 CV/DC-8 EXP/DC-8S

Диагностическая ультразвуковая система

Руководство оператора

[Специальные процедуры]

Содержание

Co	одержани	10	i		
	Заявление о правах на интеллектуальную собственность				
	Вводная часть				
	Правила	техники безопасности	III		
1	Обзор.		1-1		
	1.1 Och	ювные операции и клавиши	1-1		
	1.2 Mei	но измерения	1-2		
	1.2.1	Местоположение измерения	1-3		
	1.2.2	Измерительный инструмент	1-4		
	1.2.3	Переключение режима	1-5		
	1.2.4	Переключение между библиотеками измерений	1-5		
	1.3 Изм	ерение, расчет и исследование	1-5		
	1.4 Изм	еритель	1-7		
	1.5 Окн	о результатов	1-7		
	1.5.1	Отображение результатов	1-7		
	1.5.2	Перемещение окна результатов	1-8		
	1.5.3	Назначение окна результатов	1-8		
	1.6 Me>	коконное измерение	1-10		
	1.7 Отч	ет	1-10		
	1.7.1	Просмотр отчета	1-11		
	1.7.2	Редактирование отчета	1-11		
	1.7.3	Просмотр прошлых отчетов	1-13		
	1.7.4	Печать отчета	1-14		
	1.7.5	Экспорт отчета	1-14		
	1.7.6	Кривая роста плода	1-14		
2	Предва	арительные установки измерения	2-1		
	2.1 Och	ювные процедуры предварительной установки	2-1		
	2.2 Пре	дварительная установка параметров измерений	2-2		
	2.3 Аку	шерские предварительные установки	2-3		
	2.3.1	Акушерская формула	2-3		
	2.3.2	Операции предварительной акушерской настройки	2-8		
	2.4 Пре	дварительные установки измерения	2-8		
	2.4.1	Предварительная установка общих измерений	2-9		

	2.4.2	Предварительная установка специальных измерений	
	2.5 Бы	строе акушерское измерение	2-14
3	Общие	э измерения	
	3.1 Oc	новные процедуры общего измерения	
	3.2 Об	щие измерения в режиме 2D	
	3.2.1	Глуб	3-1
	3.2.2	Расстояние	
	3.2.3	Угол	3-2
	3.2.4	Площадь и длина контура	
	3.2.5	Объем	
	3.2.6	Двойное расстояние	
	3.2.7	Параллел	
	3.2.8	Длина кривой	
	3.2.9	Отношение(Д)	
	3.2.10	Отн(Пл)	
	3.2.11	В-профиль	
	3.2.12	В-гист	
	3.2.13	Цвет.скор	
	3.2.14	Объёмный кровоток	
	3.2.15	IMT	
	3.2.16	Степень растяжения	
	3.2.17	Растяжение-Гист	
	3.3 Об	щие измерения в М-режиме	
	3.3.1	Расстояние	
	3.3.2	Время	
	3.3.3	Наклон	
	3.3.4	Скорость	
	3.3.5	ЧСС	
	3.4 Об	щие измерения в допплеровском режиме	3-11
	3.4.1	Время	3-11
	3.4.2	ЧСС	3-11
	3.4.3	Ск. D	
	3.4.4	Ускорение	3-11
	3.4.5	Допплеровский контур	
	3.4.6	ПС/КД	
	3.4.7	Объёмный кровоток	
	3.5 Ли ⁻	тература	
4	Брюш	ная полость	

	4.1	Под	аготовка абдоминального исследования	4-1
	4.2	Осн	ювные процедуры измерения брюшной полости	4-1
	4.3	Инс	трументы для абдоминальных измерений	4-1
	4.4	Выг	толнение абдоминальных измерений	4-4
	4.5	Отч	ет об абдоминальном исследовании	4-4
5	Аку	/шеј	рство	5-1
	5.1	Под	аготовка акушерского исследования	5-1
	5.2	Осн	ювные процедуры измерения	5-1
	5.3	Гес	тационный возраст (GA)	5-1
	5.	3.1	Клинический гестационный возраст	5-1
	5.	3.2	Ультразвуковой гестационный возраст	
	5.4	Инс	струменты для акушерских измерений	5-4
	5.5	Выг	полнение акушерских измерений	
	5.	5.1	Работа с инструментами измерений	5-10
	5.	5.2	Работа с инструментами вычислений	5-10
	5.	5.3	Работа с инструментами исследования	5-11
	5.6	Исс	следование в случае многоплодной беременности	5-11
	5.7	Отч	ет об акушерском исследовании	5-12
	5.	7.1	Биофизический профиль плода	5-12
	5.	7.2	Полоса сравнения	5-13
	5.	7.3	Z-счет	5-13
	5.	7.4	Кривая роста плода	5-14
	5.8	Лит	ература	5-14
6	Кар	одис	логия	6-1
	6.1	Под	аготовка кардиологического исследования	6-1
	6.2	Осн	ювные процедуры кардиологических измерений	6-1
	6.3	Инс	трументы для кардиологических измерений	6-1
	6.	3.1	Кардиологические измерения в режиме 2D	6-2
	6.	3.2	Кардиологические измерения в М-режиме	6-5
	6.	3.3	Кардиологические измерения в допплеровском режиме	6-7
	6.	3.4	Кардиологические измерения в режиме TDI	6-12
	6.4	Выг	толнение кардиологических измерений	6-13
	6.	4.1	Работа с инструментами измерений	6-13
	6.	4.2	Работа с инструментами вычислений	6-13
	6.	4.3	Работа с инструментами исследования	6-13
	6.5	Отч	ет по кардиологическому исследованию	6-40
	6.6	Лит	ература	6-40
7	Co	суди	истые измерения	7-1

	7.1	Под	готовка сосудистого исследования	. 7-1
	7.2	Осн	ювные процедуры измерения сосудов	. 7-1
	7.3	Инс	трументы для сосудистых измерений	. 7-1
	7.4	Выг	толнение сосудистых измерений	. 7-4
	7.	4.1	Работа с инструментами измерений	. 7-4
	7.	4.2	Работа с инструментами вычислений	. 7-5
	7.	4.3	Работа с инструментами исследования	. 7-5
	7.5	Отч	ет о сосудистом исследовании	. 7-7
	7.6	Лит	ература	. 7-7
8	Гин	еко	логия	8-1
	8.1	Под	готовка гинекологического исследования	. 8-1
	8.2	Осн	ювные процедуры гинекологических измерений	. 8-1
	8.3	Инс	трументы для гинекологических измерений	. 8-1
	8.4	Выг	полнение гинекологических измерений	. 8-3
	8.	4.1	Работа с инструментами измерений	. 8-3
	8.	4.2	Работа с инструментами вычислений	. 8-3
	8.	4.3	Работа с инструментами исследования	. 8-4
	8.5	Отч	ет о гинекологическом исследовании	. 8-5
	8.6	Лит	ература	. 8-5
9	Урс	олог	ия	9-1
9	Урс 9.1	олог Под	ия	9-1 . 9-1
9	Урс 9.1 9.2	олог Под Осн	ия цготовка урологического исследования ювные процедуры урологических измерений	9-1 . 9-1 . 9-1
9	Урс 9.1 9.2 9.3	олог Под Осн Инс	ия цготовка урологического исследования новные процедуры урологических измерений струменты для урологических измерений	9-1 . 9-1 . 9-1 . 9-1
9	Урс 9.1 9.2 9.3 9.4	олог Под Осн Инс Выг	ия потовка урологического исследования овные процедуры урологических измерений трументы для урологических измерений	9-1 .9-1 .9-1 .9-1 .9-3
9	Урс 9.1 9.2 9.3 9.4 9.4	олог Под Осн Инс Выг 4.1	ия потовка урологического исследования новные процедуры урологических измерений струменты для урологических измерений полнение урологических измерений Работа с инструментами измерений	9-1 . 9-1 . 9-1 . 9-1 . 9-3 . 9-3
9	Урс 9.1 9.2 9.3 9.4 9.4 9.4	лог Под Осн Инс Выг 4.1	ия аготовка урологического исследования новные процедуры урологических измерений струменты для урологических измерений полнение урологических измерений Работа с инструментами измерений Работа с инструментами вычислений	9-1 . 9-1 . 9-1 . 9-1 . 9-3 . 9-3 . 9-4
9	Урс 9.1 9.2 9.3 9.4 9.4 9.4	Олог Под Осн Инс Выг 4.1 4.2 4.3	ия иготовка урологического исследования новные процедуры урологических измерений полнение урологических измерений полнение урологических измерений Работа с инструментами измерений Работа с инструментами вычислений Работа с инструментами исследования.	9-1 . 9-1 . 9-1 . 9-3 . 9-3 . 9-3 . 9-4 . 9-5
9	Урс 9.1 9.2 9.3 9.4 9.4 9. 9.5	Олог Под Осн Инс Выг 4.1 4.2 4.3 Отч	ия потовка урологического исследования ковные процедуры урологических измерений струменты для урологических измерений полнение урологических измерений полнение урологических измерений Работа с инструментами измерений Работа с инструментами вычислений Работа с инструментами исследования	9-1 . 9-1 . 9-1 . 9-3 . 9-3 . 9-3 . 9-5 . 9-5
9	Урс 9.1 9.2 9.3 9.4 9.4 9.5 9.5	Олог Под Осн Инс Выг 4.1 4.2 4.3 Отч Лит	ия потовка урологического исследования	9-1 . 9-1 . 9-1 . 9-3 . 9-3 . 9-3 . 9-4 . 9-5 . 9-6 . 9-6
9	Урс 9.1 9.2 9.3 9.4 9.4 9.5 9.5 9.6 Ma	Олог Под Осн Инс Выг 4.1 4.2 4.3 Отч Лит л.ча	ия потовка урологического исследования	9-1 .9-1 .9-1 .9-3 .9-3 .9-4 .9-5 .9-6 .9-6
9	Урс 9.1 9.2 9.3 9.4 9.4 9.5 9.5 9.6 Ma . 10.1	лог Под Осн Инс Выг 4.1 4.2 4.3 Отч Лит л.ча Под	ия	9-1 .9-1 .9-1 .9-3 .9-3 .9-4 .9-5 .9-6 .9-6 I0-1
9 10	Урс 9.1 9.2 9.3 9.4 9.4 9.4 9.5 9.5 9.6 Ma 10.1 10.2	олог Под Осн Инс Выг 4.1 4.2 4.3 Отч Лит л.ча Под Осн	ия повные процедуры урологических измерений полнение урологических измерений Работа с инструментами измерений Работа с инструментами вычислений Работа с инструментами исследования ет об урологическом исследовании ература ст	9-1 .9-1 .9-1 .9-3 .9-3 .9-4 .9-5 .9-6 .9-6 10-1 10-1
9	Урс 9.1 9.2 9.3 9.4 9.4 9.5 9.5 9.6 Ma 10.1 10.2 10.3	лог Под Осн Инс Выг 4.1 4.2 4.3 Отч Лит л.ча Под Осн Инс	ия потовка урологического исследования повные процедуры урологических измерений полнение урологических измерений Работа с инструментами измерений Работа с инструментами вычислений Работа с инструментами исследования ература ст	9-1 .9-1 .9-1 .9-3 .9-3 .9-3 .9-4 .9-5 .9-6 .9-6 I0-1 10-1 10-1
9	Урс 9.1 9.2 9.3 9.4 9.4 9.5 9.5 9.6 Ma 10.1 10.2 10.3 10.4	лог Под Осн Инс Выг 4.1 4.2 4.3 Отч Лит л.ча Под Осн Инс Выг	ия потовка урологического исследования повные процедуры урологических измерений полнение урологических измерений Работа с инструментами измерений Работа с инструментами вычислений Работа с инструментами исследования Работа с инструментами исследования ература Ст	9-1 .9-1 .9-1 .9-3 .9-3 .9-4 .9-5 .9-6 10-1 10-1 10-1 10-1 10-3
9	Урс 9.1 9.2 9.3 9.4 9.4 9.5 9.5 9.6 Ma 10.1 10.2 10.3 10.4 10.4	олог Под Осн Инс Выг 4.1 4.2 4.3 Отч Лит л.ча Под Осн Инс Выг).4.1	ия	9-1 .9-1 .9-3 .9-3 .9-4 .9-5 .9-6 .9-6 10-1 10-1 10-1 10-3 10-3
9	Урс 9.1 9.2 9.3 9.4 9.4 9.5 9.6 Ma 10.1 10.2 10.3 10.4 10 10 10	олог Под Осн Инс Выг 4.1 4.2 4.3 Отч Лит л.ча Под Осн Инс Выг).4.1	ия	9-1 .9-1 .9-1 .9-3 .9-3 .9-4 .9-5 .9-6 .9-6 10-1 10-1 10-1 10-3 10-3 10-3
9	Урс 9.1 9.2 9.3 9.4 9.4 9.5 9.5 9.6 Ma 10.1 10.2 10.3 10.4 10 10 10 10 10 10	олог Под Осн Инс Выг 4.1 4.2 4.3 Отч Лит Лит Лит Лод Осн Инс Выг).4.1).4.2	ия	9-1 .9-1 .9-1 .9-3 .9-3 .9-4 .9-5 .9-6 .9-6 10-1 10-1 10-1 10-3 10-3 10-3 10-3

10.6	Литература	
11 Op	гопедия	11-1
11.1	Подготовка ортопедического исследования	11-1
11.2	Основные процедуры ортопедических измерений	11-1
11.3	Инструменты ортопедических измерений	11-1
11.4	Выполнение измерений тазобедренного сустава	11-3
11.5	Отчет об ортопедическом исследовании	11-4
11.6	Литература	11-4
12 Эк	стренная медпомощь	12-1
12.1	Основные процедуры измерения	
12.2	Инструменты измерения для неотложной медицинской помощи (ЕМ)	
12.3	Отчет об исследовании ЕМ	

© 2012 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Все права защищены. Дата выпуска данного руководства оператора: 2012-06.

Заявление о правах на интеллектуальную собственность

Компания SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD. (в дальнейшем называемая Mindray) обладает правами интеллектуальной собственности на данное изделие Mindray и на это руководство. Данное руководство может содержать сведения, охраняемые авторским правам или патентами, и не передает никакие лицензии в соответствии с патентными или авторскими правами Mindray или иных лиц.

Компания Mindray полагает, что сведения, содержащиеся в данном руководстве, являются конфиденциальной информацией. Разглашение сведений, содержащихся в данном руководстве, в какой бы то ни было форме без получения письменного разрешения компании Mindray строго запрещается.

Опубликование, изменение, воспроизведение, распространение, заимствование, адаптация, перевод данного руководства или составление документов на его основе в какой бы то ни было форме без получения письменного разрешения компании Mindray категорически запрещено.

ВАЖНО!

- 1. Никакая часть этого руководства не может быть скопирована или перепечатана, полностью или частично, без получения письменного разрешения.
- 2. Содержимое данного руководства может быть изменено без предварительного уведомления и без каких-либо правовых обязательств с нашей стороны.

Вводная часть

В данном руководстве подробно описан порядок работы с системами DC-8/DC-8 PRO/DC-8 CV/DC-8 EXP/DC-8S Diagnostic Ultrasound System. Прежде чем приступать к работе, следует внимательно прочитать и усвоить все сведения, приведенные в данном руководстве, чтобы гарантировать безопасное и правильное функционирование системы.

ПРИМЕЧАНИЕ:	В ходе эксплуатации данной системы можно использовать в качестве справочника следующие руководства:
	 Руководство оператора (Стандартные процедуры)
	 Данные выходной акустической мощности

Интерфейсы, которые отображаются на экране, могут отличаться от приведенных в руководствах - это зависит от версии программного обеспечения и конфигурации каждой системы.

ПРИМЕЧАНИЕ:	Функции, описанные в данном руководстве, представлены не во всех
	системах, продаваемых различных регионах. Наличие функций зависит от
	конкретной приобретенной системы.

Все меню и экраны, приведенные в данном руководстве, взяты в качестве примеров и относятся к полной конфигурации системы.

Правила техники безопасности

1. Значение сигнальных слов

Для привлечения внимания к требованиям по технике безопасности и другим важным инструкциям в данном руководстве используются такие сигнальные слова, как

ОПАСНО!, **ОСТОРОЖНО!**, **ВНИМАНИЕ!** и **ПРИМЕЧАНИЕ**. Сигнальные слова и их значение определяются следующим образом. Значение сигнальных слов следует уяснить до прочтения данного руководства.

Сигнальное слово	Что означает
Мопасно!	Указывает на возможность возникновения опасной ситуации, которая, если ее не предотвратить, может привести к тяжелой травме или летальному исходу.
∆осторожно!	Указывает на возможность возникновения потенциально опасной ситуации, которая, если ее не предотвратить, может привести к тяжелой травме или летальному исходу.
ДВНИМАНИЕ !	Указывает на возможность возникновения потенциально опасной ситуации, которая, если ее не предотвратить, может привести к травме легкой или средней степени тяжести.
ПРИМЕЧАНИЕ	Указывает на возможность возникновения потенциально опасной ситуации, которая, если ее не предотвратить, может привести к порче имущества.

2. Значение символов безопасности

Знак	Описание
\triangle	Общее предупреждение, предостережение, угроза или опасность.

3. Правила техники безопасности

Соблюдайте следующие правила техники безопасности, чтобы гарантировать безопасность пациента и оператора при использовании этой системы.

∆внимание :	1.	Выберите надлежащее изображение пациента и инструменты измерений. Только специалисты могут выполнять соответствующие измерения и анализировать их результаты.
	2.	Ограничьте измерители фактической исследуемой областью (ROI). Измерения, выходящие за исследуемую область, будут неверными.
	3.	Перед исследованием нового пациента необходимо нажать клавишу <end exam=""> (Завершить исследование), чтобы завершить текущее сканирование и удалить сведения и данные пациента. В противном случае данные нового пациента могут наложиться на данные предыдущего пациента.</end>

4. При выключении системы или нажатии клавиши < End Exam> (Завершить исследование) все несохраненные данные будут утеряны. 5. При изменении режима во время измерения удаляются данные общих измерений. 6. При нажатии клавиши <Freeze> (Стоп-кадр) для отмены стоп-кадра изображения во время измерения будут стерты данные общих измерений. 7. При нажатии клавиши <Measure> (Измерить) во время измерения будут стерты данные общих измерений. 8. При нажатии клавиши <Clear> (Стереть) будут стерты измерители, все данные в окне результатов, комментарии и метки тела. 9. В двойном В-режиме результаты измерения объединенного изображения могут быть неточными. Поэтому такие результаты предоставляются только для справки, а не для подтверждения диагноза. 10. Качество расширенного изображения, построенного в режиме iScape (панорамная визуализация), зависит от квалификации оператора. При выполнении измерения в режиме iScape требуется особое внимание, поскольку результаты могут оказаться неточными. 11. Необходимо, чтобы данные измерений точно соответствовали плоду во время акушерских измерений. 12. Чтобы узнать обо всех функциональных возможностях данной системы, см. Руководство оператора – Стандартные процедуры. 13. Если результаты автоматического измерения не полностью соответствуют изображению, выполните измерение вручную.

1 Обзор

1.1 Основные операции и клавиши

Советы: В настоящем руководстве кнопки и клавиши обозначаются следующим образом:

- <>: Обозначает клавишу/кнопку на панели управления или клавиатуре. Например, <Set> (Установить).
- []: Обозначает кнопку/пункт меню или сенсорного экрана. Например, [Готов].

Нажмите/выберите [пункт/кнопку]: установите курсор на пункт меню или кнопку и нажмите клавишу <Set> (Установить).

Основные процедуры измерения

- 1. Чтобы начать новое исследование, нажмите клавишу <End Exam> (Завершить исследование).
- 2. Нажмите клавишу <Patient> (Пациент) и введите сведения о пациенте.

К ним относятся идентификатор, имя, рост, вес пациента и т. д. Введите их вручную для нового пациента, или загрузите из iStation или рабочего списка для имеющегося пациента.

Введенные сведения о пациенте используются для сохранения данных измерений, анализа и отчета об исследовании. Подробнее см. в разделе «Подготовка к исследованию -> Сведения о пациенте» руководства оператора [Стандартные процедуры].

- Нажмите клавишу <Probe> (Датчик) и выберите надлежащий режим исследования. Подробнее см. в разделе «Подготовка к исследованию» руководства оператора [Стандартные процедуры].
- 4. Предварительная установка измерения.

Предназначена для предварительной установки параметров измерения, акушерской формулы, пакетов общих/специальных измерений и т. д. Подробнее см. в разделе «2 Предварительные установки измерения».

- 5. Чтобы начать измерение, нажмите клавишу <Measure> или <Caliper>.
- В меню измерения или на сенсорном экране выберите пункт, чтобы начать измерение.
 Подробнее о пунктах меню (инструментах) общих и специальных измерений см. в главе «З Общие измерения», посвященной соответствующим специальным измерениям.
- 7. Чтобы посмотреть отчет об исследовании, нажмите клавишу <Report> (Отчет).

О редактировании и просмотре отчета см. в разделе «1.7 Отчет».

Функции кнопок

Клавиши	Основные операции
Measure	Вход и выход из режима измерения.
Set	Выберите пункт меню измерения и нажмите клавишу <set> (Установить), чтобы активировать его. Во время измерения нажатием клавиши <set> (Установить)</set></set>
	подтверждается и завершается текущая операция.

Клавиши	Основные операции
Lindata	Переключение между неподвижным и подвижным концами измерителя во время измерения.
Opuale	В режиме iWorks нажатием кнопки вводится измерение согласно подсказке.
Clear	Нажатие: возврат к предыдущему этапу измерения или удаление измерителей в порядке, обратном их установке.
Clear	Нажатие и удержание: стирание всех измерителей с экрана и данных из окна результатов.
Report	Открытие и закрытие страницы отчета.
Cursor	Отображение курсора.
Трекбол	Перемещение курсора.
Многофункциональная ручка	Включение наиболее часто используемых функций измерения или выбор пункта измерения путем вращения.

Подробнее о функциях клавиш см. в разделе «Обзор системы» руководства оператора [Стандартные процедуры].

1.2 Меню измерения

Меню общих и специальных измерений отличаются друг от друга. Подробнее о меню измерений см. в разделе «З Общие измерения» и соответствующих главах, посвященных специальным измерениям.

Меню измерений и соответствующий сенсорный экран выглядят следующим образом:

Изме	рение		C	Скрыть резу	Вых.
2D					
BPD	OFD	HC	AC	FL	
HUM	Толщи- на PL	AFI	TAD	M APAD	
			ОВ		

1.2.1 Местоположение измерения

Изм	(e	ре			e
Пра	B	J	Iе	в	
п	CI	рд	0	т	p.

Элементы управления местоположением используются для выбора мест измерения.

- Стор. (Лев/Прав): используется для пункта (например, почка), который содержит измерения параметров левой/правой стороны, соответственно.
- Место (Пркс/Срд/Дист): используется для пунктов (например, сосуд), которые содержит измерения проксимальных, срединных или дистальных параметров.
- Выбор местоположения измерения
- 1. Установите курсор на элемент управления местоположением (например, на сторону).
- 2. Нажмите клавишу <Set> (Установить), чтобы выбрать местоположение измерения.

Также можно повернуть ручку под пунктами «Место» или «Стор.» на сенсорном экране, чтобы изменить местоположение.

Советы: Элементы управления местоположением применимы только в специальных измерениях.

1.2.2 Измерительный инструмент

Существуют два вида измерительных инструментов.

- Общие инструменты: Основные измерительные инструменты для общих измерений, например «расстояние» и «площадь».
- Специальные инструменты: Измерительные инструменты для специальных измерений. Эти инструменты разбиты на категории и объединены в клинические специальные пакеты, такие как «Абдомин», «Акушерск.» и т. д. Например, «НС» (окружность головы) — это один из специальных инструментов в акушерских измерениях.
- **Советы:** 1. На самом деле, большинство специальных инструментов используют при измерении общий метод измерения. Например, инструмент измерения «площадь» используется при измерении НС (окружность головы). В отчет заносятся только результаты специального измерения.
 - 2. Определения измерения, расчета и исследования см. в разделе «1.3 Измерение, расчет и исследование».

Активация измерительного инструмента

Порядок действий следующий:

- 1. Выберите инструмент:
 - Наведите курсор на пункт меню и нажмите <Set>.
 - Нажмите пункт на сенсорном экране.
- 2. Выполните измерение с учётом фактической ситуации.
- 3. После завершения измерения выполните необходимые операции.

Выбор метода измерения в режиме реального времени

У некоторых измерительных инструментов (например, «площадь» в общих измерениях на двумерных изображениях) имеется несколько методов на выбор.

- 1. Выберите в меню или на сенсорном экране пункт «Площ.».
- 2. Поверните ручку под нужным элементом на сенсорном экране, чтобы выбрать метод, как показано на рисунке ниже.

Другие свойства

Свойства	Описания
Текущий измерительный инструмент/пункт	Подсвечен.
Выполненное измерение	Специальный инструмент/пункт, измерение с помощью которого уже выполнено, помечается галочкой «√». (Если один или несколько пунктов подменю (расширенного меню) исследования уже выполнены, это исследование будет помечено как измеренное.)
На страницу вверх/вниз	Используйте значки ▲/▼ в меню или на сенсорном экране.

Свойства	Описания
Недоступный пункт	Затемнен. Чтобы включить его, нужно переключиться в соответствующий режим визуализации.
Окно результатов	Для отображения или скрытие результатов при нажатии кнопки [Резул] на сенсорном экране.

1.2.3 Переключение режима

Для перехода к меню измерений, доступных для других режимов, всегда можно использовать вкладки режимов на сенсорном экране, как показано на рисунке ниже.

1.2.4 Переключение между библиотеками измерений

Во время специального измерения поворачивайте ручку под пунктом [Библиот] на сенсорном экране, чтобы выбрать одну из библиотек измерений, доступных для данного датчика и режима исследования.

1.3 Измерение, расчет и исследование

Существуют три вида пунктов меню измерений.

Измерение

Результаты измерений получаются непосредственно с помощью измерительных инструментов и обозначаются значком « ». Например, «Отрезок» в общем измерении на плоскости, или «HC» в акушерском измерении.

На сенсорном экране измерительные инструменты обозначаются квадратными кнопками,

например, так:

Расчет

Результаты вычислений автоматически выводятся системой с использованием в качестве параметров других результатов измерений или вычислений, они обозначаются на экране предварительной установки значком « М». Например, EFW (Расчетный вес плода) в акушерском измерении.

Как только выполнены все измерения, относящиеся к инструменту вычисления, система автоматически подсчитывает результат. Если некоторые измерения выполняются позже, система автоматически обновит результат вычисления с помощью самых последних результатов измерения.

На сенсорном экране инструменты вычисления обозначаются квадратными кнопками,

например, так:

Исследование

Группа измерений и (или) расчетов для специального клинического приложения, они обозначаются на экране предварительной установки значком « В ». Например, AFI (ИАЖ) в акушерском измерении.

Чтобы скрыть или показать измерения или расчеты, входящие в исследование, сверните или разверните его.

Advance O. B.

На сенсорном экране инструменты исследования обозначаются так: Стрелка указывает выбранные инструменты.

1.4 Измеритель

Измеритель — это графический элемент, состоящий из нескольких точек и прямой линии или кривой линии, нарисованной на ультразвуковом изображении.

Неподвижный/подвижный конец

Концы измерителей могут быть подвижными и неподвижными. Подвижный конец называется курсором.

Цвет измерителя

Согласно системным предварительным установкам по умолчанию, подвижный конец измерителя отображается зеленым цветом, а неподвижный — белым.

Значки на концах измерителя

На следующем рисунке показаны 8 значков, сменяющих друг друга по кругу, которые используются на концах измерителя.

 $+\times\times\times$

Эти значки отображаются на измерителях, а также в окне результатов, чтобы различать различные измерения.

ПРИМЕЧАНИЕ: Тип и цвет курсора можно предварительно установить на странице [Предуст.сист.] -> [Приложение] (подробнее см. в разделе «2.2 Предварительная установка параметров измерений»).

1.5 Окно результатов

В окне результатов измерений отображаются результаты выполненных измерений и значение текущего измерения в реальном масштабе времени.

Для числового или графического отображения результатов используются окна результатов двух типов.

1.5.1 Отображение результатов

Выберите [Показать результат] на сенсорном экране, и последние результаты будут показаны в окне результатов в хронологическом порядке.

При просмотре результатов:

Если окно результатов заполнено, то самое старое значение будет заменяться согласно правилу «первым пришел, первым ушел».

В окне результатов отображается не более 8 результатов, а на экране может отображаться на более 2 графических окон результатов.

■ Для идентификации результатов измерений в числовом окне результатов используются значки или числа, а в графическом окне результатов — «№:1» или «№:2».

Результаты могут отображаться следующим образом:

- Если измерительный инструмент/пункт активизирован, но начальная точка не зафиксирована, то не отображается никаких результатов.
- Если полученное значение входит в клинический диапазон, то результат отображается в числовом виде.

- Если значение выходит за пределы клинического диапазона, но остается в пределах ультразвукового диапазона, то в конце к результату добавляется звездочка — «значение*».
- Если значение выходит за пределы ультразвукового диапазона, то результат отображается как «?».

1.5.2 Перемещение окна результатов

Чтобы переместить окно результатов:

- 1. Поместите курсор на заголовок окна результатов и нажмите клавишу <Set> (Установить).
- 2. Вращая трекбол, переместите окно результатов в нужное место.
- 3. Нажмите клавишу <Set> (Установить), чтобы зафиксировать окно результатов.

1.5.3 Назначение окна результатов

Результат специального измерения можно назначить общему пункту измерения из окна результатов. Специальным инструментом может быть имеющийся в системе или пользовательский инструмент.

Назначение имеющегося специального инструмента

Порядок действий следующий:

1. В окне результатов переместите курсор на значение общего измерения, и когда он выделится зеленым цветом, нажмите клавишу <Set> (Установить), чтобы открыть список соответствующих инструментов, как показано ниже.

+	0	т	D .	2	99	ст	•
			F .	<u>л</u> р.	00	011	BPD
							OFD
							FL
							HUM
							Толщина PL
							TAD
							APAD
							NF
							GS
							YS
							•

Отобразится список соответствующих инструментов, отвечающих следующим требованиям:

- Содержится в текущем специальном пакете.
- Использует тот же инструмент общего измерения, что и результат.

На приведенном выше рисунке показаны специальные инструменты акушерского измерения, которые используют метод «Отрезок».

- 2. Выберите в списке специальный инструмент и нажмите клавишу <Set> (Установить).
- 3. Назначенное значение отобразится в окне результатов и сохранится в отчете об исследовании.

Советы:	Ин изм	Инструмент можно назначить непосредственно последнему результату общего измерения, выполнив следующие действия:				
	1.	По завершении общего измерения (например, «Площ») откройте меню специальных измерений (например, акушерских).				
	2.	В меню или на сенсорном экране выберите требуемый специальный инструмент (например, HC). Выбранный специальный инструмент также должен удовлетворять правилам соответствия, приведенным на шаге 1.				
	3.	Если специальные инструменты входят в текущий отчёт, то назначенные результаты сохранятся в отчете.				

Назначение нового специального инструмента

Когда в списке соответствующих инструментов нет нужного, можно создать новый специальный инструмент. Порядок действий следующий:

- 1. Внизу списка соответствующих инструментов выберите пункт [Созд].
- 2. Откроется следующее диалоговое окно.

Созд	
Новое	
Обл	Гинеко
Гот	Отм

- а) Введите новое название.
- b) Выберите область применения.
- 3. Нажмите [Готов], чтобы присвоить общий результат новому инструменту.

ПРИМЕЧАНИЕ: Повторное назначение уже назначенного результата общего измерения невозможно.

Выход из режима назначения результата

Для выхода нажмите клавишу < Esc> на клавиатуре, или выберите [Отмена] в списке соответствующих инструментов.

Назначение автоматического расчета спектра

Как и в случае результата общего измерения, результаты автоматического расчета спектра можно назначить специальному инструменту, действуя так же, как описано выше.

Подробнее об автоматическом расчёте спектра см. раздел «3.4.5 Допплеровский контур».

ПРИМЕЧАНИЕ: Назначать можно специальному инструменту, который использует метод «Д конт.» в текущем специальном пакете.

1.6 Межоконное измерение

Для линейного датчика межоконное измерение доступно в двойном В-режиме, если выбрана функция [Автообъед] и для получения изображения в левом и правом окнах используются одни и те же датчик, глубина и режим инвертирования.

1.7 Отчет

В отчете записываются результаты измерений, которые автоматически сохраняются системой после каждого измерения.

- Нажмите клавишу <Report> (Отчет), чтобы открыть диалоговое окно.
- Появится отчет по умолчанию для текущего исследования.
- После просмотра нажмите клавишу <Report> (Отчет), <Freeze> (Стоп-кадр) или <Esc>, либо выберите кнопку [Отмена] или [Готов], чтобы закрыть страницу отчета.

1.7.1 Просмотр отчета

На странице отчета отображаются следующие элементы:

- Для каждого измерения указаны три последних значения и окончательное значение.
- В отчете отображаются результаты только для тех измерений, которые предварительно заданы в шаблоне отчета и завершены, как показано на приведенном выше рисунке.
- Если в отчете несколько страниц, выберите [Предыдущ] или [Далее], чтобы перевернуть страницу.

1.7.2 Редактирование отчета

С отчетом можно выполнять следующие операции редактирования:

- Редактирование данных измерений
- Ввод замечаний по ультразвуковому исследованию
- Выбор изображений
- Анализ данных отчета

Редактирование данных измерений

ВНИМАНИЕ: При редактировании значений измерений нужно вводить подходящие данные, иначе возможен ошибочный диагноз.

- Редактировать можно 3 значения измерений в текстовых полях. Для этого переместите курсор в текстовое поле и нажмите клавишу <Set> (Установить).
- Измененные значения подчеркиваются.
- Окончательное значение отображается в столбце [Знач]. В столбце [Метод] выберите вариант ([Посл], [СРД], [Мак] или [Мин]), чтобы задать способ расчета окончательного значения.
- Для значений результатов, используемых при расчете параметров GA (Гестационный возраст) и SD (Стандартное отклонение), в столбце [Формула] можно выбрать формулу, применяемую для расчета. При смене формулы значения GA и SD обновляются.

ПРИМЕЧАНИЕ:	1.	Редактировать можно только значения измерений, а значения расчетов — нельзя.
	2.	После редактирования значения измерения автоматически обновляется среднее значение, полученное с помощью инструмента, и соответствующий результат вычисления.

Стирание данных

Чтобы стереть все данные измерений, нажмите кнопку [Очист.все] на странице отчета или сенсорном экране.

Ввод замечаний по ультразвуковому исследованию

В поле [Коммент] можно ввести соответствующие данные.

Выбор изображений

В отчет можно добавлять изображения, сохраненные в текущем исследовании.

1. На странице отчета нажмите кнопку [Добавить рисунок], чтобы открыть следующее диалоговое окно.

Левый столбец: Изображения, сохраненные в текущем исследовании. Правый столбец: Изображения, выбранные для добавления в отчет.

- 2. Выберите изображение.
 - а) Изображение добавляется и удаляется с помощью следующих кнопок:
 - [>] Добавление выбранного в левом столбце изображения в правый столбец.
 - [>>] Добавление всех изображений из левого столбца в правый столбец.
 - [<] Перемещение выбранного изображения из правого столбца.
 - [<<] Перемещение всех изображений из правого столбца.
 - b) Скорректируйте расположение изображений.

Выберите изображение в правом столбце и нажмите [Вверх] или [Вниз], чтобы изменить его место в последовательности, в которой изображения отображаются в отчете.

3. Для подтверждения нажмите [Coxp].

Анализ данных отчета

Отображаемые в отчете анатомические измерения исследования молочной железы, акушерского или сосудистого исследования можно предварительно установить.

- 1. Нажмите кнопку [Анализ].
- 2. Выберите или введите описания анатомических измерений.

Советы: В раскрывающемся списке можно выбрать только описания [Оценка плода].

Переворачивайте страницы с помощью кнопок [Пред.стр.]/[Далее].

3. Для подтверждения нажмите кнопку [Готов]. В отчете данные анализа отображаются после значений измерения.

ВНИМАНИЕ: При редактировании значений измерений нужно вводить подходящие данные, иначе возможен ошибочный диагноз.

1.7.3 Просмотр прошлых отчетов

Если выполнялось несколько исследований пациента, то в отчете отображается раскрывающийся список [Обсл].

- 1. Выберите прошлые исследования в раскрывающемся списке [Обсл].
- 2. В соответствии с режимом исследования выберите надлежащий шаблон в пункте [Тип отчета].

Убедитесь, что шаблон соответствует режиму исследования, иначе результаты исследования будут отображаться неправильно. Например, результат измерения брюшной полости не будет отображаться в акушерском шаблоне отчета, в предварительных настройках которого нет никаких измерений брюшной полости.

3. Просмотр прошлого отчета.

ПРИМЕЧАНИЕ:	1.	Прошлые отчеты можно просматривать, но не редактировать.
	2.	Кроме того, сведения о пациента можно просмотреть на экране iStation (подробнее см. в разделе «Управление данными пациента» руководства оператора [Стандартные процедуры]).

1.7.4 Печать отчета

Чтобы напечатать отчет, нажмите кнопку [Печ.] на странице отчета.

Или нажмите кнопку [Прос.печ] на странице отчета, чтобы предварительно просмотреть отчет. На странице предварительного просмотра можно выполнить следующие операции:

Печать отчета:	Нажмите кнопку [Печ.].
На страницу вверх/вниз	Для просмотра предыдущей или следующей страницы нажмите кнопку [Пред.стр.] или [Далее].
Увеличение/уменьшение изображения:	В раскрывающемся списке выберите коэффициент масштабирования.
Выход из предварительного просмотра:	Нажмите кнопку [Закр].

1.7.5 Экспорт отчета

Отчеты можно экспортировать как документы в формате PDF или RTF, которые пригодны для просмотра и редактирования на ПК.

- 1. В диалоговом окне отчета нажмите кнопку [Эксп.], чтобы открыть диалоговое окно.
- 2. Выберите накопитель в списке накопителей.
- 3. Выберите требуемый каталог. Для возврата в родительский каталог дважды щелкните значок [..].
- 4. Введите имя файла для экспорта отчета.
- 5. Выберите тип файла.
- 6. Для подтверждения нажмите кнопку [Готов].

С помощью следующих кнопок можно создать, удалить или переименовать каталог:

[Созд]: Создание нового шаблона.

[Удал.]: Удаление выбранного каталога. С помощью клавиш <Shift> и <Set> (Установить) можно выбрать несколько каталогов.

[Переим]: Переименование выбранного каталога.

1.7.6 Кривая роста плода

Если в шаблоне отчета на странице [Инф.пациента] выбрано [Акушерск.] (см. раздел «5.7.4 Кривая роста плода»), то можно посмотреть кривую роста плода, нажав кнопку [Рост] на странице отчета. Подробнее см. в «5.7.4 Кривая роста плода».

2 Предварительные установки измерения

Перед выполнением измерений нужно предварительно настроить следующие параметры:

- Предварительная установка параметров измерений
- Акушерские предварительные установки
- Предварительная установка общих измерений
- Предварительная установка специальных измерений

2.1 Основные процедуры предварительной установки

Основные процедуры предварительной установки измерений следующие:

- 1. Нажмите <F10>, чтобы открыть меню предварительных установок:
- 2. Выполните предварительную установку параметров измерения.

Откройте [Настр] -> [Предуст.сист.] -> [Приложение], чтобы предварительно установить линейку измерения и т. д. Подробнее см. в разделе «2.2 Предварительная установка параметров измерений».

3. Выполните предварительную установку акушерской формулы.

Откройте [Настр] -> [Предуст.сист.] -> [ОВ].

Выполните предварительную установку GA (Гестационный возраст плода), FG (Рост плода) и веса плода. Подробнее см. в «2.3 Акушерские предварительные установки».

4. Предварительная установка измерения.

Откройте [Настр] -> [Предуст.измер.] -> [Размеры] и [Измерен], чтобы предварительно установить меню измерения и пункты меню. Подробнее см. в «2.4 Предварительные установки измерения».

5. Выйдите из режима настройки, чтобы внесенные изменения вступили в силу.

В меню [Настр] или на сенсорном экране выберите [Сохр], чтобы выйти из режима настройки.

ПРИМЕЧАНИЕ: Изменения вступают в силу только после нажатия пункта [Coxp] в меню [Hactp].

2.2 Предварительная установка параметров измерений

Основной порядок выполнения операций следующий:

- 1. Нажмите клавишу <F10>, чтобы открыть меню [Настр].
- 2. Выберите [Hacтр] -> [Предуст.сист.] -> [Приложение], чтобы предварительно установить следующие параметры:
 - Измеритель
 - Анализ левого желудочка
 - Фолликул
- 3. Для подтверждения нажмите кнопку [Готов].

Далее описаны функции параметров.

Измеритель

Измеритель		
Вид.кур	Знак	-
Разм. ку	Средн	-
Серд.со	2	

Можно предварительно установить:

Инструменты	Описания
	Типы курсоров отображаются на измерителе и в окне результатов. Возможные значения:
Вид.курсор	 Число: курсор всегда отображается как «+», а различные измерения помечаются числами.
	 Значки: курсор последовательно отображается в виде 8 значков для идентификации различных измерений.
Разм.курс.	Размер курсора. Возможные значения: «Больш», «Средн», «Мал».
Серд.сокр.	Количество сердечных циклов в расчете частоты сердечных сокращений. При измерении частоты сердечных сокращений количество сердечных циклов должно совпадать с предварительно установленным числом.

Настройки инструмента анализа функции левого желудочка

Выбор инструментов, используемых при анализе Куб/Teichholz/Гибсон.

Фолликул

Выбор метода расчёта фолликула. Возможные значения:

Фолликул 3 расстояния/2 расстояния/1 расстоян

2.3 Акушерские предварительные установки

Основные процедуры:

- 1. Нажмите клавишу <F10>, чтобы открыть меню [Настр].
- 2. Выберите [Предуст.сист.] -> [ОВ].

Можно предварительно установить формулу гестационного возраста плода (GA), роста плода (FG) и веса плода (EFW).

Подробнее см. в «2.3.2 Операции предварительной акушерской настройки».

3. После выполнения настройки нажмите кнопку [Готов], чтобы закрыть страницу.

2.3.1 Акушерская формула

Акушерские формулы используются для расчетов гестационного возраста, веса плода и кривой роста плода.

Формулы гестационного возраста и роста плода

Гестационный возраст вычисляется автоматически по завершении соответствующих измерений. После выполнения новых измерений система пересчитывает гестационный возраст.

Советы:	1.	Как предварительно установить формулу по умолчанию, см. в разделе «Установите формулу по умолчанию.».
	2.	Подробнее о гестационном возрасте и кривой роста плода см. в разделе «5 Акушерство».

Формулы гестационного возраста и роста плода приведены в следующей таблице:

Инструменты	Гестационный возраст (GA)	FG
	Tokyo	Rempen
GS	Rempen	Токуо
	Hansmann	Hansmann
	China	Hellman
	Hadlock	
	Tokyo	
	Jeanty	Hadlock
	Nelson	Токуо
	Robinson	Robinson
UNL	Rempen	Rempen
	Hansmann	Hansmann
	China	ASUM
	ASUM	
	RobinsonBMUS	

Примечание: «/» означает, что для этого инструмента нет формулы.

Инструменты	Гестационный возраст (GA)	FG
	Hadlock	Hadlock
	Токуо	Токуо
	Jeanty	Jeanty
	Kurtz	Kurtz
	Hansmann	Sabbagha
חחם	Merz	Hansmann
вро	Rempen	Merz
	ChittyOI	Rempen
	Osaka	ChittyOI
	China	Osaka
	Nicolaides	Nicolaides
	ASUM	ASUM
	Hadlock	Hadlock
	Jeanty	Merz
	Hansmann	Hansmann
HC	Chitty_Derived	ChittyPL
	ChittyPL	Chitty_Derived
	Nicolaides	Nicolaides
	ASUM	ASUM
	Hadlock	Hadlock
	leanty	Jeanty
	Merz	Merz
	ChittyPl	ChittyPL
AC	Nicolaides	ChittyDer
	ASIM	Nicolaides
	CEEE	ASUM
	Hansmann	CFEF
		Hansman
	Hadlock	
	Tokyo	Hadlock
	Jeanty	Токуо
	Hohler	Merz
	Merz	Hansmann
FI	Hansmann	O'Brien
	Warda	Warda
	Chitty	Chitty
	Osaka	Osaka
	China	Nicolaides
	Nicolaides	ASUM
	ASUM	

Инструменты	Гестационный возраст (GA)	FG
	Hansmann	Hansmann
OFD	Nicolaides	Merz
		Nicolaides
		ASUM
APAD	1	Merz
TAD	1	Merz
FTA	Osaka	Osaka
THD	Hansmann	Hansmann
APTD	1	1
YS	1	1
TTD	1	/
ним	Jeanty	Merz
	ASUM	ASUM
Локт.	1	Merz
Голен	1	Merz
RAD	1	Merz
		Jeanty
FIB		Merz
	,	Jeanty
CLAV	Yarkoni	Yarkoni
	нш	Hill
TCD	Nicolaides	Goldstein
		Nicolaides
OOD	Jeanty	1
Позвонки	1	1
NT	/	1
Цистерна магна	1	Nicolaides
		Hadlock
		Shepard
пвп.	Tokyo	Hansmann
רוטרו,	Hadlock	Токуо
		Brenner
		William

Инструменты	Гестационный возраст (GA)	FG
EEW2		Hadlock
		Shepard
	Tokyo	Hansmann
	Hadlock	Токуо
		Brenner
		William
Ср.диам.меш.	Daya	1
MCA PI	1	JSUM
MCA RI	1	JSUM
Пуп.ар РІ	1	JSUM
Пуп.ap RI	1	JSUM
AFI	1	Moore

Формулы веса плода

EFW — это инструмент расчета. Если выполнены все измерения, необходимые для формулы EFW, эта величина вычисляется автоматически. После выполнения новых измерений система пересчитывает EFW.

Советы: Формулы EFW и EAW2 для GA/FG отличаются от формул на странице [EFW].
 Формула EFW для GA/FG используется для расчета гестационного возраста или кривой роста плода на основе расчетного веса плода (EFW).
 Формула EFW на странице [FG] используется для определения расчетного веса плода (EFW) на основе ряда результатов акушерских измерений (например, окружности живота — AC).

Формулы веса плода показаны в следующей таблице:

Формулы	Описания		Единицы измерения	
			Изделие	
Hadlock (AC, FL)	EFW= 10^(1,304+ (0,05281*AC)+ (0,1938*FL)- (0,004*AC*FL))	г	СМ	
	SD=0,154*EFW Тип SD=±2SD	г	г	
Hadlock (AC, FL, BPD)	EFW= 10^(1,335 -(0,0034*AC*FL) + (0,0316*BPD) + (0,0457*AC) + (0,1623*FL))		СМ	
	SD=0,146*EFW Тип SD=±2SD	Г	г	
Hadlock (AC, FL, HC)	EFW= 10^(1,326-(0,00326*AC*FL)+ (0,0107*HC)+ (0,0438*AC)+ (0,158*FL))		СМ	
	SD=0,148*EFW Тип SD=±2SD	г	г	
Hadlock(AC,F L,HC,BPD)	EFW= 10^(1,3596- (0,00386*AC*FL)+ (0,0064*HC+ (0,00061*BPD*AC)+ (0,0424*AC)+ (0,174*FL))		СМ	
	SD=0,146*EFW Тип SD=±2SD	Г	Г	

Формулы	Описания		Единицы измерения	
Shepard	EFW (кг) = 10^(-1,7492+ (0,166*BPD)+ (0,046*AC)- (2,646*AC*BPD/1000))	кг	СМ	
	SD=0,202*EFW Тип SD=±2SD	Г	г	
Merz1	EFW=-3200,40479+(157,07186*AC)+(15,90391*(BPD^2))	г	СМ	
Merz2	EFW=0,1*(AC^3)	Г	СМ	
Hansmann	EFW = (-1,05775*BPD)+ (0,0930707*(BPD^2))+ (0,649145*THD)- (0,020562*(THD^2))+ 0,515263	кг	СМ	
Tokyo	EFW=(1,07*(BPD^3))+(3,42*APTD*TTD*FL)	г	СМ	
Osaka	EFW=(1,25674*(BPD^3))+(3,50665*FTA*FL)+6,3	Г	СМ	
Campbell	EFW (кг) = EXP (-4,564+(0,282*AC)-(0,00331* (AC^2)))		СМ	

Процентиль веса в зависимости от возраста

Клинический процентиль (CP) и ультразвуковой процентиль(UP) будут рассчитываться и отображаться в отчете в следующем формате согласно формуле, выбранной для расчета EFW.

- CP(Метод расчета)(Формула) ××%: где метод расчета может принимать значения LMP, PRV, IVF, BBT и EDD;
- UP(Метод расчета)(Формула) ××%: где метод расчета может принимать значения AUA, CUA.
- Клинический процентиль (СР)

Найдите среднее значение и рассчитайте диапазон порога по формуле (для расчета EFW) в таблице роста плода согласно клиническому гестационному возрасту (полученному в сведениях пациента, например, LMP, IVF).

Если фактическое значение EFW попадает в следующий диапазон, сохраните расчет, иначе CP не будет отображаться.

Среднее значение EFW ×1,25 > EFW > Среднее значение EFW × 0,75

Например, EFW-GP(LMP) — это клинический процентиль EFW, рассчитанный на основе значения LMP, полученного из сведений пациента.

Ультразвуковой процентиль (UP)

Метод расчета тот же самый, что и для CP, за исключением того, что вместо клинического гестационного возраста используется ультразвуковой гестационный возраст.

Например, EFW-GP(AUA) и EFW-GP(CUA) — это клинический процентиль EFW, рассчитанный на основе AUA и CUA, соответственно.

2.3.2 Операции предварительной акушерской настройки

2.3.2.1 Основные процедуры

Основные процедуры предварительной акушерской настройки следующие:

- 1. Откройте станицу [Настр] -> [Предуст.сист.] -> [OB].
- 2. Установите формулу по умолчанию.
 - в левом столбце на странице [GA], [FG] или [EFW] выберите инструменты акушерских измерений.
 - b) В правом столбце выберите формулу.
 - с) Нажмите кнопку [Умолчан], и формула по умолчанию отметится галочкой ($\sqrt{}$).

На странице [GA] можно выбрать, отображать ли или EDD в акушерских результатах. На странице [FG] можно выбрать количество и размещение кривых роста, отображаемых в отчете.

- 3. Установите отображение вес плода.
 - а) Откройте страницу [EFW].
 - b) Откройте страницу [Ед.изм.мас.плода]:

в раскрывающемся списке выберите «Метрич», «Англ.» или «Англ. и Метрич».

- с) Выберите формулу для расчета процентиля веса.
- Выберите формулу в раскрывающемся списке [EFW-GP].
- 4. Для подтверждения нажмите кнопку [Готов].

Импорт/экспорт акушерской таблицы или формулы гестационного возраста

- 1. На странице GA или FG выберите [Откр] или [Эксп.].
- 2. Откроется диалоговое окно [Загр.данн].
- 3. Выберите накопитель и путь к файлу, где расположены данные.
- 4. Выберите файл данных для загрузки или экспорта.
- 5. Для подтверждения нажмите кнопку [Готов].

Советы: экспортировать можно только импортированную ранее пользовательскую таблицу.

2.4 Предварительные установки измерения

Основные процедуры:

- 1. Нажмите клавишу <F10>, чтобы открыть меню [Настр].
- 2. В меню [Настр] выберите пункт [Предуст.измер].
- Выполните предварительную установку общих и специальных измерений.
 Подробнее см. в разделах «2.4.1 Предварительная установка общих измерений» и «2.4.2 Предварительная установка специальных измерений».
- 4. Для подтверждения нажмите [Coxp].

2.4.1 Предварительная установка общих измерений

Можно предварительно настроить пакеты общих измерений для режима 2D (В, цветовой допплер, энергетический допплер), М-режима или допплеровского (РW и CW) режима.

1. На странице [Предуст.измер.] выберите вкладку [Размеры], как показано на приведенном ниже рисунке.

ПРИМЕЧАНИЕ: Выполняемая здесь предварительная установка меню общих измерений связана с режимом исследования.

Например, изменение предварительной установки общих акушерских измерений не повлияет на меню общих измерений «Взросл.ABD».

2. Выберите вкладку [2D], [М] или [Doppler], чтобы перейти к соответствующим предварительным установкам.

[Доступн.пункты]: имеющиеся инструменты общих измерений, сконфигурированные системой в текущем режиме сканирования, но еще не назначенные.

[Выб. пункты]: инструменты, добавляемые в меню.

3. Добавьте или переместите инструмент.

Добавьте или переместите инструмент общего измерения с помощью следующих кнопок:

- [>] Добавление инструмента, выбранного в списке [Доступн.пункты], в список [Выб. пункты].
- [>>] Добавление всех инструментов (ничего выбирать не нужно) из списка [Доступн.пункты] в список [Выб. пункты].
- [<] Перемещение выбранного инструмента из списка [Выб. пункты] в список [Доступн.пункты].
- [<<] Перемещение всех инструментов из списка [Выб. пункты] в список
 - [Доступн.пункты]. Перед перемещением не нужно выбирать никаких инструментов.

4. Установите инструмент по умолчанию.

Выберите инструмент в списке [Выб. пункты] и нажмите кнопку [Умолчан]. Инструмент отметится галочкой √.

При входе в это меню общих измерений инструмент по умолчанию активируется автоматически.

5. Измените положение инструмента.

Выберите инструмент в правом столбце и нажмите кнопку [Вверх] или [Вниз], чтобы изменить его место в соответствующем меню общих измерений и на сенсорном экране.

- 6. Выберите последовательность измерений.
 - [Повтор]: по завершении текущего измерения система автоматически активирует его еще раз.
 - [Далее]: по завершении текущего измерения система автоматически активирует следующий инструмент меню.
 - [Heт]: по завершении текущего измерения курсор можно передвигать по всему экрану. Курсор автоматически возвращается в меню соответствующего измерения.
- 7. Для подтверждения нажмите кнопку [Готов].

2.4.2 Предварительная установка специальных измерений

2.4.2.1 Основные процедуры

1. На странице [Предуст.измер.] выберите [Измерен], как показано на приведенном ниже рисунке.

Реж 0В2/3		
Измерен Размеры		
Пак, измер <mark>ОВ</mark>		Допол
2D M Doppler		
Доступн	Посл-сть Нег 🖉	
Гинек Иамер 🗸		
СКL СКL СКL СКL СКL СКL СКL СКL	 ОВ ВРД ОГД ОГД ОГД ОГД НС АС FL HUM T олщина PL AFI TAD AFI TAD APAD NF P ано О.Б. Advance О.Б. C е р д ц. плода Z-р е з ультаты EFW2 	Умолч Вверх Вниз

2. Выберите режим сканирования «2D», «М» или «Doppler» (Допплер).
3. Выберите или отредактируйте пакет измерений.

Как правило, при выборе режима в поле [Реж.обсл.] соответствующий пакет появляется в поле [Пак.измер].

- Если никакого пакета нет, то необходимо добавить пакет измерений по умолчанию для текущего режима измерения. Название пакета можно ввести непосредственно в текстовом поле [Пак.измер], и затем добавить в него инструменты. Или можно нажать кнопку [Допол-но], чтобы открыть диалоговое окно для добавления нового пакета.
- Если отображается не тот пакет, который требуется, нажмите кнопку [Допол-но] и выберите новый пакет по умолчанию для текущего режима исследования.

Подробнее о создании, удалении и настройке пакета по умолчанию см. в разделе «2.4.2.2 Предварительная установка пакета измерений».

- 4. В раскрывающемся списке под надписью [Доступн.пункты] выберите область применения.
- В выпадающем списке [Доступн.пункты] выберите [Измерение], [Вычислен.], [Иссл] или [Все], и соответствующие инструменты появятся в списке.
 Подробнее об измерении, расчете и исследовании см. в разделе «1.3 Измерение, расчет и исследование».
- Выполните предварительную установку меню измерения.
 Подробнее о добавлении, создании и настройке измерения по умолчанию см. в разделе «2.4.2.3 Предварительная установка меню измерения».
- 7. Выберите последовательность измерений.
 - [Повтор]: по завершении текущего измерения система автоматически активирует его еще раз.
 - [Далее]: по завершении текущего измерения система автоматически активирует следующий инструмент меню.
 - ► [Нет]: по завершении текущего измерения курсор можно передвигать по всему экрану. Курсор автоматически возвращается в меню соответствующего измерения.
- 8. Для подтверждения нажмите кнопку [Готов].

2.4.2.2 Предварительная установка пакета измерений

Во время измерения в меню и на сенсорном экране отображается предварительно установленный пакет. Инструменты пакета можно предварительно установить, причем они могут принадлежать различным областям применения.

1. Нажмите [Допол-но], чтобы открыть следующую страницу.

Доб.нов.пакет			
Реж 0B2/3 Доступн	Выб, пу	нкты	
CAR			
Живот	GYN		
Почка		но	
Надпочечник			
Урология			
Простата			
тну			
Янчко			
ORTH			
Каротндный			
УП нскусства			
УП Вене			
LE нскусства			
LE Behe			
TCI	Созд		
IMT			
EM ABD			
EM OB			
Грудь			
		Готов	Отмена

Где:

- [Доступн.пункты]: специальные пакеты, сконфигурированные в системе, но еще не назначенные текущему режиму.
- [Выб. пункты]: специальные пакеты, назначенные текущему режиму исследования. Если текущему режиму исследования назначены несколько пакетов, то во время измерения между ними можно переключаться с помощью заголовка меню.

Пакеты можно редактировать, в том числе создавать пакет, добавлять и перемещать измерения, перемещать пакет, задавать пакет по умолчанию, изменять положение пакета среди других пакетов.

Создание пакета

- 1. Нажмите кнопку [Созд].
- 2. В появившемся диалоговом окне введите название нового пакета.
- Для подтверждения нажмите кнопку [Готов].
 Новый пакет отобразится в списке [Доступн.пункты], как показано на следующем рисунке.

Добавление и удаление пакета

Пакет добавляется/удаляется с помощью следующих кнопок:

- [>] Добавление пакета, выбранного в списке [Доступн.пункты], в список [Выб. пункты].
- [>>] Добавление всех пакетов (ничего выбирать не нужно) из списка [Доступн.пункты] в список [Выб. пункты].
- [<] Перемещение выбранного пакета из списка [Выб. пункты] в список [Доступн.пункты].
- [<<] Перемещение всех пакетов (ничего выбирать ненужно) из списка [Выб. пункты] в список [Доступн.пункты].

Удаление пакета

- 1. Выберите пакет в списке [Доступн.пункты].
- 2. Нажмите кнопку [Удал.].

Советы: Чтобы удалить пункт из списка [Выб. пункты], сначала его нужно переместить в список [Доступн.пункты].

Установка пакета по умолчанию

- 1. Выберите пакет в списке [Выб. пункты] и нажмите кнопку [Умолчан].
- 2. Пакет по умолчанию отмечается галочкой √.

Советы: 1. Пакет по умолчанию отображается при переходе на страницу [Предуст.измер.].

2. При переходе в состояние измерения отображается меню измерения пакета по умолчанию (соответствующее режиму исследования).

Изменение положения пакета

Чтобы изменить местоположение пакета в меню, выберите пакет в списке [Выб. пункты] и нажимайте кнопки [Вверх]/[Вниз].

2.4.2.3 Предварительная установка меню измерения

На странице [Предуст.измер.] выберите вкладку [Меню] в поле [Выб. пункты].

Возможны следующие операции.

- Добавление и перемещение пункта
- Установка пункта по умолчанию
- Изменение положения пункта

ПРИМЕЧАНИЕ: Прежде чем редактировать пункт меню измерений, выберите соответствующим образом [Пак.измер], режим сканирования («2D», «М» или «Doppler»), область применения (например, «Абдомин», «Акушерск.» и т. д.) и тип пункта (измерение, расчет или исследование). Подробнее см. в описании шагов 2, 3, 4, 5 и 6 в разделе «Предварительная установка специальных измерений».

Добавление и перемещение пункта

Добавление пункта

Измерения, расчеты и исследования из списка [Доступн.пункты] можно добавлять в список [Выб. пункты] (добавляемые пункты отображаются как подпункты в исследовании). Выбранные пункты отображаются в меню и на сенсорном экране.

Добавьте или переместите инструмент общего измерения с помощью следующих кнопок:

- [>] Добавление инструмента, выбранного в списке [Доступн.пункты], в список [Выб. пункты].
- [>>] Добавление всех инструментов (ничего выбирать не нужно) из списка [Доступн.пункты] в список [Выб. пункты].
- [<] Перемещение выбранного инструмента из списка [Выб. пункты] в список [Доступн.пункты].

Перемещение всех инструментов из списка [Выб. пункты] в список [<<] [Доступн.пункты]. Перед перемещением не нужно выбирать никаких инструментов.

Установка пункта по умолчанию

Измерение, расчет или исследование из списка [Выб. пункты] можно задать в качестве пункта по умолчанию. Пункт по умолчанию будет автоматически активироваться при открытии меню измерения, содержащего этот пункт.

- 1. Выберите пункт в списке [Меню].
- Нажмите кнопку [Умолчан], и назначенный пункт по умолчанию отметится галочкой √.
 Чтобы отменить выбор пункта в качестве пункта по умолчанию, выберите его и нажмите кнопку [Умолчан], либо установите в качестве пункта по умолчанию другой пункт.

Советы: Если определенное исследование задано по умолчанию, то его подменю автоматически отображается при открытии этого меню измерения.

Изменение положения пункта

Положение измерения, расчета или исследования в списке [Выб. пункты] можно изменить.

- 1. Выберите пункт в списке [Выб. пункты].
- 2. Нажмите кнопку [Вверх] или [Вниз].

Очередность пунктов в списке совпадает с порядком их отображения в меню.

2.5 Быстрое акушерское измерение

Откройте страницу [Предуст.]-[Предуст.сист.]-[Конф. клав] и присвойте функции клавишам в списке «Измерение» справа. Более подробно см. в руководстве оператора [Стандартные процедуры].

3 Общие измерения

Инструменты общих измерений:

- Режим 2D (В/цветовой/энергетический/направленный энергетический)
- Общие измерения в М-режиме
- Допплеровский режим (PW/CW)

3.1 Основные процедуры общего измерения

- 1. Начните исследование.
- 2. Выберите режим формирования изображения (В/М/допплеровский), затем выполните сканирование и сделайте стоп-кадр изображения.
- 3. Нажмите клавишу <Caliper> (Измеритель), чтобы открыть меню общих измерений режима 2D/M/допплер.
- 4. Выберите пункт в меню общих измерений или на сенсорном экране, чтобы начать измерение.

Советы:	1.	Очередность измерений устанавливается предварительно (подробнее см. в разделе «2.4.1 Предварительная установка общих измерений»).
	2.	Инструмент измерения можно активировать, выбрав пункт в меню измерения или на сенсорном экране, далее это описывается как «Выберите/нажмите (определённый пункт) в меню измерения».

3.2 Общие измерения в режиме 2D

3.2.1 Глуб.

Назначение:

- Секторный датчик: глубина это расстояние от центра сектора до курсора.
- Датчик с конвексной или линейной решеткой: глубина это расстояние от поверхности датчика до измерительного курсора в направлении ультразвуковой волны.

Советы: Значение глубины отображается в окне результатов в реальном масштабе времени только после нажатия клавиши <Set> (Установить) с целью фиксации исходной точки. Прошлое значение глубины не отображается в окне результатов.

- 1. В меню измерения выберите пункт [Глуб.], и на экране появится курсор.
- 2. С помощью трекбола установите курсор в нужную точку.
- 3. Нажмите клавишу <Set> (Установить), чтобы установить точку измерения, и результат отобразится в окне результатов.

3.2.2 Расстояние

Назначение: измерение длины отрезка между двумя точками на изображении.

- 1. В меню измерения выберите пункт [Отрезок], и на экране появится курсор.
- 2. С помощью трекбола переместите курсор в исходную точку.
- 3. Нажмите клавишу <Set> (Установить), чтобы задать начальную точку.
- С помощью трекбола переместите курсор в конечную точку. Здесь, Нажмите клавишу <Clear> (Очистить), чтобы отменить установку исходной точки. Или, Нажмите клавишу <Update> (Обновить), чтобы переключиться между неподвижным и подвижным концами измерителя.
- 5. Нажмите клавишу <Set> (Установить), чтобы задать конечную точку.

3.2.3 Угол

Назначение: измерение угла между двумя пересекающимися плоскостями на изображении в диапазоне: 0°- 180°.

- 1. В меню измерения выберите пункт [Угол], и на экране появится курсор.
- 2. Задайте два отрезка, как описано в разделе «3.2.2 Расстояние». После задания отрезков результат отобразится в окне результатов.

3.2.4 Площадь и длина контура

Назначение: измерение площади и длины контура замкнутой области на изображении. Существуют четыре метода измерения:

- Эллипс: Фиксация эллиптической области по двум перпендикулярным осям.
- Контур: Фиксация замкнутой области свободным очерчиванием.
- Сплайн: Фиксация сплайновой кривой по ряду точек (максимум 12 точек).
- Крест: Фиксация крестообразной области с двумя осями, перпендикулярными друг другу. Обе точки — начальную и конечную — осей можно зафиксировать в произвольном месте.

Советы: Эти четыре метода применимы также к другим измерительным инструментам, и при дальнейшем упоминании не будут описываться. Порядок действий следующий.

Эллипс

- 1. В меню измерения выберите пункт [Эллипс]. На экране появится курсор.
- 2. Переместите курсор в исследуемую область.
- 3. Нажмите клавишу <Set> (Установить), чтобы задать начальную точку первой оси эллипса.
- 4. Переместите курсор в конечную точку первой оси эллипса. Здесь,

Нажмите клавишу <Update> (Обновить), чтобы переключиться между неподвижным и подвижным концами первой оси. Или,

Нажмите клавишу <Clear> (Стереть), чтобы отменить исходную точку первой оси.

- 5. Нажмите клавишу <Set> (Установить), чтобы задать конечную точку первой оси эллипса. На экране появится вторая ось.
- 6. При вращении трекбола эллипс растягивается от постоянной оси или сжимается к ней. Как можно точнее очертите исследуемую область с помощью трекбола,

Или нажмите клавишу <Update> (Обновить) или <Clear> (Стереть), чтобы вернуться к шагу, предшествующему заданию первой оси.

7. Нажмите клавишу <Set> (Установить), чтобы привязать область эллипса, и результат измерения отобразится в окне результатов.

Контур

- 1. В меню измерения выберите пункт [Контур]. На экране появится курсор.
- 2. Переместите курсор в исследуемую область.
- 3. Нажмите клавишу <Set> (Установить), чтобы зафиксировать начальную точку.
- 4. Перемещайте курсор вдоль требуемой области, чтобы очертить ее.

Чтобы изменить линию контура, вращайте ручку < Angle>:

Против часовой стрелки: отмена последовательности точек.

По часовой стрелке: восстановление последовательности точек.

 Нажмите клавишу <Set> (Установить), и контурная линия замкнется отрезком прямой линии, соединяющей начальную и конечную точки. Кривая также замкнется, когда курсор окажется очень близко от исходной точки.

Сплайн

- 1. В меню измерения выберите пункт [Сплайн]. На экране появится курсор.
- 2. Переместите курсор в исследуемую область.
- 3. Нажмите клавишу <Set> (Установить), чтобы задать первую контрольную точку сплайновой линии.
- 4. Перемещайте курсор вдоль исследуемой области и нажмите клавишу <Set> (Установить), чтобы привязать вторую контрольную точку.
- 5. Поверните трекбол, и на экране появится сплайновая линия, определяемая тремя точками: первой и второй контрольными точками и активным курсором.
- Перемещайте курсор вдоль края исследуемой области и установите другие контрольные точки (не более 12), чтобы сплайновая линия оказалась как можно ближе к исследуемой области.

Чтобы скорректировать предыдущую точку, нажмите клавишу <Clear> (Стереть).

7. Дважды нажмите клавишу <Set> (Установить), чтобы привязать последнюю контрольную точку. Сплайновая линия зафиксируется, и результаты отобразятся в окне результатов.

Крест

- 1. В меню измерения выберите пункт [Крест]. На экране появится курсор.
- 2. Переместите курсор в исследуемую область.
- 3. Нажмите клавишу <Set> (Установить), чтобы зафиксировать начальную точку первой оси.
- 4. С помощью трекбола установите конечную точку первой оси и нажмите клавишу <Set> (Установить). Здесь,

Нажмите клавишу <Update> (Обновить), чтобы переключиться между начальной и конечной точками первой оси. Или,

Нажмите клавишу <Clear> (Стереть), чтобы отменить установку исходной точки первой оси.

- 5. Нажмите клавишу <Set> (Установить), чтобы установить конечную точку первой оси. На экране появится вторая ось креста (перпендикулярная первой оси).
- 6. Переместите курсор и нажмите клавишу <Set> (Установить), чтобы зафиксировать исходную точку второй оси.
- 7. Переместите курсор в конечную точку второй оси. Здесь,

Нажмите клавишу <Update> (Обновить), чтобы переключиться между начальной и конечной точками первой оси. Или,

Нажмите клавишу <Clear> (Стереть), чтобы отменить установку исходной точки первой оси.

8. Нажмите клавишу <Set> (Установить), чтобы задать конечную точку второй оси и зафиксировать область. Результаты появятся в окне результатов.

3.2.5 Объем

Назначение: измерение объема исследуемого объекта.

Способ:

З расстояния

Расчет объема объекта с помощью трех осей на двух изображениях, полученных сканированием в В-режиме в перпендикулярных друг другу плоскостях. Формулы расчета следующие:

Volume
$$(cm^3) = \frac{\pi}{6} \times D1(cm) \times D2(cm) \times D3(cm)$$

Где: D1, D2, D3 — длины трех осей исследуемого объекта.

Эллипс

Расчет объема объекта по площади его горизонтального сечения. Формула расчета следующая:

Volume (cm³)=
$$\frac{\pi}{6} \times a(cm) \times b^2(cm)$$

Где: а — длина большой оси эллипса, b — длина малой оси эллипса.

Эллипт. расстояния

Расчет объема объекта по площади его горизонтального и вертикального сечения. Формула расчета следующая:

Volume (cm³) = $\frac{\pi}{6} \times a(cm) \times b(cm) \times m(cm)$

Здесь: a, b и m — длины большой, малой и третьей оси эллипса, соответственно.

Порядок действий:

Объем (3 расст.)

- 1. Выберите [Объем (3 расст.)] в меню измерения. На экране появится курсор.
- 2. Здесь: D1, D2, D3 длины трех осей исследуемого объекта.

Подробное описание процедур см. в разделе «3.2.2 Расстояние».

Как правило, D1, D2, D3 должны принадлежать различным плоскостям сканирования.

Объем (эллипс)

- 1. Выберите [Объем (эллипс)] в меню измерения. На экране появится курсор.
- 2. Процедуры аналогичны тем, что используются для измерения площади методом «Эллипс» (подробнее см. в разделе 3.2.4 Площадь»).

Объём (эллипт. расстояния)

- 1. Выберите [Объем (эллипт. расстояния)] в меню измерения. На экране появится курсор.
- 2. Измерьте площадь вертикального сечения методом «Эллипс».

3.2.4Процедуры аналогичны тем, что используются для измерения площади методом «Эллипс» (подробнее см. в разделе Площадь").

- 3. Отмените стоп-кадр изображения. Выполните повторное сканирование исследуемой области в направлении, перпендикулярном предыдущему изображению.
- 4. Измерьте длину третьей оси методом «Отрезок» (подробное описание процедур см. в разделе «3.2.2 Расстояние»).

3.2.6 Двойное расстояние

Назначение: измерение длин отрезков А и В, перпендикулярных друг другу.

- 1. В меню измерения выберите пункт [Двойное расстояние], и на экране появится курсор.
- 2. Установите курсор в начальную точку измерения.
- 3. Нажмите клавишу <Set> (Установить), чтобы задать начальную точку первого отрезка.
- 4. С помощью трекбола установите конечную точку первой оси и нажмите клавишу <Set> (Установить). Здесь,

Нажмите клавишу <Update> (Обновить), чтобы переключиться между начальной и конечной точками первой оси. Или,

Нажмите клавишу <Clear> (Стереть), чтобы отменить установку исходной точки первой оси.

- 5. Нажмите клавишу <Set> (Установить), чтобы задать начальную точку первого отрезка. На экране появится второй отрезок, перпендикулярный зафиксированному отрезку.
- 6. Переместите курсор в начальную точку второго отрезка.
- Нажмите клавишу <Set> (Установить), чтобы задать начальную точку второго отрезка. Или нажмите клавишу <Update> (Обновить) или <Clear> (Стереть), чтобы вернуться к последнему шагу.
- 8. Переместите курсор в конечную точку второго отрезка. Здесь,

Нажмите клавишу <Update> (Обновить), чтобы переключиться между начальной и конечной точками второй оси. Или,

Нажмите клавишу <Clear> (Стереть), чтобы отменить установку начальной точки второй оси.

9. Нажмите клавишу <Set> (Установить), чтобы подтвердить конечную точку второго отрезка.

3.2.7 Параллел

Назначение: измерение расстояния между каждой парой из пяти параллельных отрезков, т. e., всего четырех расстояний.

- 1. В меню измерения выберите пункт [Параллел], и на экране появятся две линии, перпендикулярные друг другу. Их пересечение является начальной точкой отрезка.
- 2. Вращая ручку <Angle>, измените угол между линиями, и затем нажмите клавишу <Set> (Установить), чтобы подтвердить.
- 3. С помощью трекбола переместите курсор в начальную точку отрезка.
- 4. Нажмите клавишу <Set> (Установить), чтобы подтвердить начальную точку и первую линию.
- 5. Переместите курсор и нажмите клавишу <Set> (Установить), чтобы подтвердить другие четыре параллельные линии. После задания последней параллельной линии подтвердится также конечная точка линии, перпендикулярной этим пяти параллельным линиям. Во время измерения дважды нажмите клавишу <Set> (Установить), чтобы задать последнюю параллельную линию и выполнить измерение.

3.2.8 Длина кривой

Назначение: измерение длины кривой на изображении. Доступные методы измерения включают методы контура и сплайна.

Контур

- 1. Выберите [Длина кривой (Контур)] в меню измерения. На экране появится курсор.
- 2. Переместите курсор в исследуемую область.

- 3. Нажмите клавишу <Set> (Установить), чтобы зафиксировать начальную точку.
- 4. Перемещайте курсор вдоль требуемой области, чтобы очертить ее.

Чтобы изменить линию контура, вращайте ручку <Angle>:

Против часовой стрелки: отмена последовательности точек.

По часовой стрелке: восстановление последовательности точек.

5. Нажмите клавишу <Set> (Установить), чтобы подтвердить конечную точку контурной линии.

О построении контура на сенсорном экране см. в «Контур» в «3.2.4 Площадь».

Сплайн

- 1. Выберите [Длина кривой (Сплайн)] в меню измерения. На экране появится курсор.
- 2. Переместите курсор в исследуемую область.
- 3. Нажмите клавишу <Set> (Установить), чтобы зафиксировать начальную точку.
- Перемещайте курсор вдоль исследуемой области и нажимайте клавишу <Set> (Установить), чтобы привязать вторую, третью, четвертую, и т. д. точки. Привязать можно не более 12 точек.

Чтобы скорректировать предыдущую точку, нажмите клавишу <Clear> (Стереть).

5. Дважды нажмите клавишу <Set> (Установить), чтобы установить конечную точку сплайновой линии.

3.2.9 Отношение(Д)

Назначение: измерение длин двух отрезков с последующим вычислением их отношения.

- 1. В меню измерения выберите пункт [Отношение(Д)], и на экране появится курсор.
- 2. Измерьте длину двух отрезков (подробное описание процедур см. в разделе «3.2.2 Расстояние»).

По завершении измерения длины второго отрезка результат отобразится в окне результатов.

3.2.10 Отн(Пл)

Назначение: измерение площадей двух замкнутых областей с последующим вычислением их отношения. Имеются следующие методы: «Эллипс«, «Крест» и «Сплайн».

- 1. Выберите в меню [Отн(Пл)] (инструменты, включающие Соотношение (Площадь эллипса), Соотношение (Площадь Сплайн) и Соотношение (Площадь Креста)) На экране появится курсор.
- 2. Измерьте площадь двух замкнутых областей (подробное описание процедур см. в разделе «3.2.4 Площадь»).

3.2.11 В-профиль

Назначение: измерение распределения градаций серого при отображении ультразвуковых эхо-сигналов вдоль линии.

- 1. В меню измерения выберите пункт [В-профиль], и на экране появится курсор.
- 2. Задайте отрезок (подробное описание процедур см. в разделе «3.2.2 Расстояние»).

Результат показан на приведенном ниже рисунке:

No:1 Gmax:186 s stal Gmin:0 Gmean:81.6 Gsd:40.5

Где:

Nº:	Номер графика. Значение: 1 или 2.
	На экране будут отображаться последние два результата.
МакС	: максимальный уровень серого.
МинС	: минимальный уровень серого.
Сред	С: средний уровень серого
sdC:	Дисперсия серого цвета.

3.2.12 В-гист

Назначение: измерение и расчет распределения градаций серого цвета ультразвуковых эхосигналов в пределах замкнутой области. Для задания замкнутой области используются методы «Эллипс», «Контур», «Сплайн» и «Прям» (Прямоугольник).

Прямоугольник

Метод «Прям» задает прямоугольник с помощью двух точек на кресте. Порядок действий:

- 1. В меню измерения выберите пункт [В-исторических (Rectangle)], и на экране появится курсор.
- 2. Переместите курсор на первую вершину прямоугольника и нажмите клавишу <Set> (Установить).
- 3. Переместите курсор на вторую вершину прямоугольника и нажмите клавишу <Set> (Установить). Результат показан на следующем рисунке:

No:1	
N:3773	
M:36.5	
MAX:6%	
SD:25.8	

Где:

Горизонтальная ось:	Уровень серого цвета на изображении
Вертикальная ось:	Процент распределения серого цвета.
Nº:	Номер графика. На экране будут отображаться последние два результата.
N:	общее число пикселов в измеряемой области.
M:	$M = \Sigma Di / N;$
MAKC:	количество пикселов с максимальным уровнем серого/N×100 %.
SD:	стандартное отклонение. SD=(∑Di²/N-(∑Di/N)²) ^{1/2} Di: уровень серого цвета в точке каждого пиксела; ∑Di: общий уровень серого цвета во всех пикселах.

Эллипс

Подробное описание процедур см. в пункте «Эллипс» раздела «3.2.4 Площадь».

Контур

Подробное описание процедур см. в пункте «Контур» раздела «3.2.4 Площадь».

Сплайн

Подробное описание процедур см. в пункте «Сплайн» раздела «3.2.4 Площадь».

3.2.13 Цвет.скор

Советы: Этот измерительный инструмент предназначен для общей оценки, а не для точного измерения.

Назначение: измерение скорости потока крови на изображении в режиме цветового допплера.

- 1. В меню измерения выберите пункт [Цвет.скор], и на экране появится курсор.
- 2. Переместите курсор в точку, где требуется измерить скорость кровотока.
- Нажмите клавишу <Set> (Установить), чтобы зафиксировать точку. Плавающая линия отобразится в направлении, параллельном распространению ультразвуковой волны в этой точке.

В этот момент компенсационный угол равен 0°. Его можно изменить (от 0 до 80°), вращая ручку <Angle>, чтобы совместить плавающую линию в этой точке с направлением кровотока, скорость которого нужно измерить.

4. Нажмите клавишу <Set> (Установить), чтобы задать направление кровотока, и результат отобразится в окне результатов.

3.2.14 Объёмный кровоток

Назначение: измерение кровотока, проходящего через поперечное сечение сосуда за единицу времени.

Подробнее см. в разделе «3.4.7 Объёмный кровоток».

3.2.15 IMT

IMT (Толщина интимы-медии) измеряет расстояние между LI (Просвет-интима) и MA (Медияадвентициальная оболочка). Подробнее см. в разделе «7.4.3 **Работа с инструментами** исследования».

3.2.16 Степень растяжения

Назначение: измерение степени растяжения на изображении, степень растяжения растяжение (нормальная ткань)/растяжение (повреждение).

Советы: эта функция поддерживается только в режиме эластографии, подробнее см. в Руководстве оператора [Стандартные процедуры].

На изображении выделенная область повреждения обозначена как A, выделенная область нормальной ткани обозначена как B; A' - расширенная область повреждения, толщина поверхности опухоли.

Растяжение ткани зависит от давления на датчик и глубины ткани, для сравнения рекомендуется использовать области одинаковой глубины и площади.

1. Выберите [Степень растяжения (Эллипс)] или [Степень растяжения (Контур)] в меню измерения.

- 2. Выберите толщину поверхности и включите функцию затенения.
 - В двухоконном режиме B+E вращайте ручку под пунктом [Тень] на сенсорном экране, чтобы перевести его в состояние «Вкл»; измерения в одном из окон сразу будут отображаться в другом.
 - Вращайте ручку под пунктом [Толщина поверхности] на сенсорном экране, чтобы задать размер поверхности опухоли.
- 3. Выполняя измерения, можно использовать метод эллипса или контура. Подробнее см. в разделе «3.2.10 Отн(Пл)».
- После измерения степени растяжения установите значение [Толщина поверхности] больше 0 мм, система автоматически расширит область повреждения А в соответствии со значением толщины поверхности. В окне результатов появятся значения: В/А', В/Поверхность, А/Поверхность.

3.2.17 Растяжение-Гист.

Назначение: отображает степень растяжения с помощью гистограммы, степень растяжения растяжение (нормальная ткань)/растяжение (повреждение).

- 1. Выберите [Растяжение-Гист.(Эллипс)] или [Растяжение-Гист.(Контур)] в меню измерения.
- 2. Выберите толщину поверхности и включите функцию затенения.
 - В двухоконном режиме B+E вращайте ручку под пунктом [Тень] на сенсорном экране, чтобы перевести его в состояние «Вкл»; измерения в одном из окон сразу будут отображаться в другом.
 - Вращайте ручку под пунктом [Толщина поверхности] на сенсорном экране, чтобы задать размер поверхности опухоли.
- 3. Выполняя измерения, можно использовать метод эллипса или контура. Подробнее см. в разделе «3.2.12 В-гист».

После измерения растяжения установите значение [Толщина поверхности] больше 0 мм, на гистограмме будут показаны данные А и А".

3.3 Общие измерения в М-режиме

3.3.1 Расстояние

Назначение: измерение расстояния между двумя точкам на изображении в М-режиме.

- 1. В меню измерения выберите пункт [Отрезок], и на экране появятся две пунктирные линии, перпендикулярные друг другу.
- 2. Переместите точку пересечения этих пунктирных линий в начальную точку измерения и нажмите клавишу <Set> (Установить).
- 3. Переместите точку пересечения в конечную точку измерения, после чего ее можно будет перемещать только в вертикальном направлении. Здесь,

Нажмите клавишу <Update> (Обновить), чтобы переключиться между неподвижным и подвижным концами измерителя. Или,

Нажмите клавишу <Clear> (Очистить), чтобы отменить установку исходной точки.

4. Нажмите клавишу <Set> (Установить), чтобы задать конечную точку.

3.3.2 Время

Назначение: измерение временного интервала между двумя точками на изображении в М-режиме.

1. В меню измерения выберите пункт [Время], и на экране появятся две пунктирные линии, перпендикулярные друг другу.

- 2. Переместите точку пересечения этих пунктирных линий в начальную точку измерения и нажмите клавишу <Set> (Установить).
- 3. Переместите точку пересечения в конечную точку измерения. Точка пересечения может двигаться только в горизонтальном направлении. Здесь,

Нажмите клавишу <Update> (Обновить), чтобы переключиться между неподвижным и подвижным концами измерителя. Или,

Нажмите клавишу <Clear> (Очистить), чтобы отменить установку исходной точки.

4. Нажмите клавишу <Set> (Установить), чтобы задать конечную точку.

3.3.3 Наклон

Назначение: измерение расстояния и времени между двумя точками на изображении в М-режиме и вычисление наклона между этими двумя точками.

- 1. В меню измерения выберите пункт [Накл.], и на экране появятся две пунктирные линии, перпендикулярные друг другу.
- 2. Переместите точку пересечения этих пунктирных линий в начальную точку измерения и нажмите клавишу <Set> (Установить).
- 3. Переместите точку пересечения в конечную точку измерения. Точка пересечения соединяется пунктирной линией с начальной точкой. Здесь,

Нажмите клавишу <Update> (Обновить), чтобы переключиться между неподвижным и подвижным концами измерителя. Или,

Нажмите клавишу <Clear> (Очистить), чтобы отменить установку исходной точки.

4. Нажмите клавишу <Set> (Установить), чтобы задать конечную точку.

3.3.4 Скорость

Назначение: измерение расстояния и времени между двумя точками на изображении в М-режиме и последующее вычисление средней скорости между двумя точками.

- 1. В меню измерения выберите пункт [Скорость], и на экране появятся две пунктирные линии, перпендикулярные друг другу.
- 2. Переместите точку пересечения этих пунктирных линий в начальную точку измерения и нажмите клавишу <Set> (Установить).
- 3. Переместите точку пересечения в конечную точку измерения, после чего ее можно будет перемещать только в вертикальном направлении.

В этот момент: Нажмите клавишу <Update> (Обновить), чтобы переключиться между неподвижным и подвижным концами измерителя. Или,

Нажмите клавишу <Clear> (Очистить), чтобы отменить установку исходной точки.

4. Нажмите клавишу <Set> (Установить), чтобы задать конечную точку.

3.3.5 ЧСС

Назначение: измерение времени между n (n≤8) сердечными циклами на изображении в М-режиме и вычисление частоты сердечных сокращений.

Количество сердечных циклов «n» можно предварительно установить в диалоговом окне предварительной установки [Предуст.сист.] -> [Приложение] (подробнее см. в разделе «2.2 Предварительная установка параметров измерений»).

В время измерения число сердечных циклов между начальной и конечной точками измерения должно в точности совпадать с предварительно заданным числом сердечных циклов. Иначе возможен неправильный диагноз.

- 1. В меню измерения выберите пункт [HR], и на экране появятся две пунктирные линии, перпендикулярные друг другу.
- 2. Выберите n сердечных циклов.

Результат измерения ЧСС, появляющийся в окне результатов (см. рисунок ниже), отображает измеренное значение ЧСС и предварительно заданное число сердечных циклов, как показано на приведенном ниже рисунке.

3.4 Общие измерения в допплеровском режиме

3.4.1 Время

Назначение: измерение временного интервала между двумя точками на изображении в допплеровском режиме.

Данная операция аналогична измерению времени в М-режиме. Подробнее см. в «3.3.2 Время».

3.4.2 ЧСС

Назначение: измерение интервала времени между n (n≤8) сердечными циклами на изображении в М-режиме и вычисление числа сердечных ударов в минуту (уд./мин).

Данная операция аналогична измерению ЧСС в М-режиме. Подробнее см. в «3.3.5 ЧСС».

3.4.3 Ск. D

Назначение: измерение скорости, градиента давления и угла коррекции в определенной точке допплеровского спектра.

Советы: Значение скорости отображается в окне результатов в реальном масштабе времени только после нажатия клавиши <Set> (Установить) с целью фиксации исходной точки. Прошлое значение скорости не отображается в окне результатов.

- 1. В меню измерения выберите пункт [Ск. D], и на экране появится курсор.
- 2. Переместите курсор в точку, где требуется измерить скорость.
- 3. Нажмите клавишу <Set> (Установить), и результат отобразится в окне результатов.

3.4.4 Ускорение

Назначение: измерение скоростей в двух точках и промежутка времени между этими точками на изображении в допплеровском режиме и вычисление ускорения, градиента давления, разности скоростей и угла коррекции.

- 1. В меню измерения выберите пункт [Ускорение], и на экране появится курсор.
- 2. Переместите курсор в первую точку, где требуется измерить скорость.

- 3. Нажмите клавишу <Set> (Установить), чтобы зафиксировать первую точку.
- 4. Переместите курсор во вторую точку, где требуется измерить скорость.
- 5. Нажмите клавишу <Set> (Установить), чтобы зафиксировать вторую точку. Результаты отобразятся в окне результатов.

3.4.5 Допплеровский контур

Назначение: измерение клинических показателей путем получения контура допплеровского спектра. Доступны методы измерения «Контур», «Сплайн», «Авто», «Скор» (Скорость) и «2 РТ» (Две точки).

Ниже приведено схематичное изображение допплеровского спектра:

ПРИМЕЧАНИЕ:	Сердечное сокращение спектра внутри контура должно совпадать с
	сердечным сокращением в предварительной установке, иначе полученное
	значение «HR» (ЧСС) будет неверным. Соответствующую предварительную
	установку см. в разделе «2.2 Предварительная установка параметров
	измерений».

- Порядок действий:
- 1. В меню измерения выберите пункт [Д конт.], и на экране появится курсор.
- 2. Установите курсор в начальной точке измерения и зафиксируйте ее с помощью клавиши [Set].
- 3. Обведите объект курсором.

Перемещая курсор вправо, нарисуйте линию контура, как можно лучше охватывающую спектр.

Чтобы откорректировать уже вычерченную линию, перемещайте курсор влево (или вращайте ручку <Angle> против часовой стрелки).

4. Обведите конечную точку, подлежащую измерению, и зафиксируйте ее, нажав клавишу <Set> (Установить).

Итоговые результаты

С помощью инструмента «Д конт.» получаются следующие результаты:

Параметры	Описания	
PS	Пиковая систолическая скорость	Максимальная скорость эритроцитов, пересекающих контрольный объем.
ED	Конечно-диастолическая скорость	Измеряет скорость крови в конце сердечного цикла.
MD	Минимальная диастолическая скорость	Минимальная абсолютная скорость в диастолическом цикле.
Скор	1	Скорость потока

Параметры	Описания		
		Средняя скорость потока по всему допплеровскому спектру внутри контура.	
		 ТАМАХ (Максимальная скорость, усредненная по времени): 	
Creatives		TAMAX(cm / s) = $\int_{T_a}^{T_b} V(t) dt / (T_b - T_a)$	
Средняя	1	Где: V(t) — максимальная скорость	
скорость		 ТАМЕАN (Средняя скорость, усредненная по времени): Получается автоматическим расчетом спектра. 	
		TAMEAN(cm/s) = $\int_{T_a}^{T_b} V(t) dt / (T_b - T_a)$	
		Где: V(t) — средняя скорость	
PPG	Пиковый градиент давления	Градиент давления, соответствующий пиковой систолической скорости. PPG (мм рт. ст.) = 4 × PS (м/с) ²	
		Средний градиент давления по всему допплеровскому спектру внутри контура.	
		МРС: Максимальный градиент давления.	
	/	$MPG(mmHg) = \int_{T_a}^{T_b} 4(V(t))^2 dt / (T_b - T_a)$	
Средний		Где: V(t) — пиковая систолическая скорость	
градиент давления		 ММРG: Средний градиент давления при средней скорости. (Получается во время автоматического расчета спектра.) 	
		MMPG(<i>mmHg</i>) = $\int_{T_a}^{T_b} 4(V(t))^2 dt / (T_b - T_a)$	
		 Где: V(t) — средняя систолическая скорость 	
		Интеграл скорости по времени. Интеграл произведения мгновенной допплеровской	
VTI	Интеграл скорости по времени	скорости и суммарного временного интервала.	
		$VTI(m) = \int_{a}^{T_{b}} V(a) da$	
		$VII(m) - \int_{T_a} V(t) dt$	
AT	Время ускорения	Соответствует времени, за которое скорость кровотока возрастает от конечно-	
		значения. Как правило, это интервал времени	
		между окончанием сердечного цикла и пиком следующего сердечного цикла. Если в систолическом цикле два пика, выберите первый пик.	
DT	Время замедления.	Время замедления.	
ЧСС	Частота сердечных сокращений	Расчет частоты сердечных сокращений в минуту путем измерения интервала времени одного сердечного цикла.	

Параметры	Описания		
		PS/ED.	
S/D	1	S/D (безразмерная величина)= PS (м/с)/ED (м/с)	
		ED/PS.	
D/S	1	D/S (безразмерная величина)= ED (м/с)/PS (м/с)	
		Индекс пульсаций.	
PI Ин	Индекс пульсаций	РІ (безразмерная величина) = (PS (м/с) – ED (м/с))/ТАМАХ (м/с)	
RI	Индекс резистентности	Индекс резистентности. RI (безразмерная величина) = (PS (м/с) – ED (м/с))/PS (м/с)	
θ	/	Угол коррекции — это спектральный угол во время измерения, который получается с помощью инструмента измерения, кроме «Д конт.», и обычно отображается вместе результатами измерения спектра.	
PV	Пиковая скорость	Пиковая скорость в систолическом или диастолическом цикле (никакой разницы), которая является наивысшей скоростью эритроцитов, пересекающих контрольный объем, и может использоваться для исследования венозного сосуда.	

ПРИМЕЧАНИЕ:

- 1. В приведенных выше формулах Т обозначает время (c), V скорость (м/с) в каждой точке на интервале T, а начальная точка контура, b конечная точка контура.
- Приведенные выше параметры это данные, получаемые с помощью инструмента «Д конт.», хотя на практике система отображает только часть из них в соответствии с операцией и предварительными установками.

Метод измерения

Метод измерения меняется в зависимости от выбранного результата, где:

Скорость

Назначение: измерение скорости, градиента давления и угла коррекции в определенной точке допплеровского спектра.

Данная операция аналогична измерению времени в М-режиме. Подробнее см. в «3.4.3 Ск. D».

- 2 PT
 - 1. В меню измерения выберите пункт [2 PT], и на экране появится курсор в виде большого знака «+».
 - 2. Переместите курсор в начальную точку измерения и зафиксируйте ее, нажав клавишу <Set> (Установить).
 - 3. Переместите курсор в конечную точку измерения и зафиксируйте ее, нажав клавишу <Set> (Установить).

Автоматический расчет спектра

Приведённые выше результаты также можно получить с помощью функции автоматического вычисления, которая рассчитывает сердечные циклы.

- Включите функцию [Авт.выч] в меню изображения PW, система автоматически проведёт вычисления и отобразит результаты в верхнем правом углу экрана.
- Нажмите [Парам.авто выч] в меню изображения PW; здесь вы можете задать вычисляемые параметры.
- Нажмите [Авторасчёт серд. цикла] в меню изображения PW; здесь вы можете задать количество сердечных циклов.

3.4.6 ПС/КД

Назначение: измерение пиковой систолической (PS) и конечно-диастолической (ED) скорости на допплеровском спектре и вычисление индекса резистентности (RI), отношения S/D и угла коррекции.

- 1. В меню измерения выберите пункт [PS/ED], и на экране появится курсор.
- 2. Переместите курсор к систолическому пику и зафиксируйте точку, нажав клавишу <Set> (Установить).
- 3. Переместите курсор в конечно-диастолическую точку и зафиксируйте ее, нажав клавишу <Set> (Установить).

3.4.7 Объёмный кровоток

Назначение: измерение кровотока, проходящего через поперечное сечение сосуда за единицу времени.

- 1. Выберите [Объем.поток] в меню измерения, и откроется подменю.
- 2. Выберите [Пл. сос.] в подменю на сенсорном экране; в его нижней части будет указана выбранная площадь сосуда и область PW:

Пл. сос.	Оцен. РW
Dist	Все

- Вращайте ручку под пунктом [Пл. сос.], чтобы выбрать метод расчёта площади: расстояние или контур.
- Вращайте ручку под пунктом [Область PW], чтобы выбрать область для оценки.
- 3. Измерение площади сосуда.
- 4. Для расчёта объёмного кровотока выберите [TAMEAN] или [TAMAX].

Элеме	нт	Описание	Метод или формула
Dist Пл. сос. Конт	Dist	Оценка площади путём измерения диаметра сосуда.	Пл. сос.=т × Диа. сос. (см) ² / 4
	Контур	Оценка площади методом контура.	«Площ» в общих измерениях в режиме 2D
TAMEAN		Об пот(Площ)-TAMEAN	Об пот(Площ) (мл/мин) = ТАМЕАN сос (см/с) × Пл. сос. (см ²) × 60 (с) «ТАМЕАN сос» — усредненная по времени средняя скорость, полученная на основе измерения «Конт.сос».

Элемент	Описание	Метод или формула
ВМАКС		Об пот(Площ) (мл/мин) = ТАМАХ сос (см/с) × Пл. сос. (см ²) × 60 (с)
	Об пот(Площ)-ТАМАХ	«ТАМАХ сос» — усредненная по времени максимальная скорость,
		полученная на основе измерения «Конт.coc».

3.5 Литература

Метод измерения объема «ЗОтр.»:	Emamian, S.A., et al., Kidney Dimensions at Sonography: Correlation With Age, Sex, and Habitus in 665 Adult Volunteers (Определение размера почки методом сонографии: корреляция с возрастом, полом и габитусом у 665 взрослых добровольцев), American Journal of Radiology, January, 1993, 160:83-86.
HR (Общие измерения в М-режиме):	Dorland's Illustrated Medical Dictionary (Иллюстрированный медицинский словарь Дорланда), ed. 27, W. B Sanders CB., Philadelphia,1988, p. 1425.
PG:	Powis, R., Schwartz, R. Practical Doppler Ultrasound for the Clinician (Практическое руководство по допплеровской эхографии для клиницистов). Williams & Wilkins, Baltimore, Maryland, 1991, p. 162.
Ускорение:	Starvos, A.T.,et.al. Segmental Stenosis of the Renal Artery Pattern Recognition of Tardus and Parvus Abnormalities with Duplex Sonography (Сегментарный стеноз почечной артерии. Распознавание аномалий типа замедленного и малого пульса методом дуплексной сонографии). Radiology, 184:487-492, 1992.
	Taylor,K.W.,Strandness,D.E.Duplex Doppler Ultrasound (Дуплексная допплеровская эхография). Churchill-Livingstone, New York,1990.
пгд:	Yoganathan, Ajit P., et al. Review of Hydrodynamic Principles for the Cardiologist:Applications to the Study of Blood Flow and Jets by Imaging Techniques (Обзор гидродинамических основ для кардиологов: применение в исследовании кровотока методами визуализации). Journal of the American College of Cardiology, 1988, Vol. 12, pp. 1344-1353
MPG:	Yoganathan, Ajit P., et al. Review of Hydrodynamic Principles for the Cardiologist:Applications to the Study of Blood Flow and Jets by Imaging Techniques (Обзор гидродинамических основ для кардиологов: применение в исследовании кровотока методами визуализации). Journal of the American College of Cardiology, 1988, Vol. 12, pp. 1344-1353
ИСВ:	Degroff, C. G. Doppler Echocardiography (Допплеровская эхокардиография). Third Edition. Lippincott-Raven, Philadelphia, 1999, p. 102-103.
ИC:	Burns, P.N. The Physical Principles of Doppler and Spectral Analysis (Физические принципы допплеровского и спектрального анализа). Journal of Clinical Ultrasound, November/December 1987, Vol. 15, No. 9, p. 586.

ИП:	Burns, Peter N. The Physical Principles of Doppler and Spectral Analysis (Физические принципы допплеровского и спектрального анализа). Journal of Clinical Ultrasound, November/December 1987, Vol. 15, No. 9, p. 585.
С/Д:	Ameriso S, et al. Pulseless Transcranial Doppler Finding in Takayasu's Arteritis (Непульсационный транскраниальный допплер. Результаты исследования при артериите Такаясу). J Clin Ultrasound, September 1990; 18:592-6
Д/С:	Ameriso S, et al. Pulseless Transcranial Doppler Finding in Takayasu's Arteritis (Непульсационный транскраниальный допплер. Результаты исследования при артериите Такаясу). J Clin Ultrasound, September 1990; 18:592-6
Об пот(Диам.)- ТАМАХ	Burns, P.N. The Physical Principles of Doppler and Spectral Analysis (Физические принципы допплеровского и спектрального анализа). Journal of Clinical Ultrasound, November/December 1987, 15(9):587.
Об пот(Площ)- ТАМАХ	Burns, P.N. The Physical Principles of Doppler and Spectral Analysis (Физические принципы допплеровского и спектрального анализа). Journal of Clinical Ultrasound, November/December 1987, 15(9):587.

4 Брюшная полость

4.1 Подготовка абдоминального исследования

Прежде чем выполнять измерение, выполните следующие подготовительные процедуры:

- 1. Подтвердите правильность выбора текущего датчика.
- 2. Проверьте правильность текущей даты системы.
- 3. Нажмите клавишу <Patient> (Пациент), зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [ABD].
- 4. Переключитесь на подходящий режим обследования.

4.2 Основные процедуры измерения брюшной полости

- 1. Нажмите клавишу <Patient> (Пациент), зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [ABD].
- Нажмите клавишу <Мeasure> (Измерить), чтобы перейти к специальным измерениям.
 Если в текущем меню нет инструментов для абдоминальных измерений, переместите курсор на заголовок меню и выберите пакет, содержащий инструменты для абдоминальных измерений.
- 3. Чтобы начать измерение, выберите в меню или на сенсорном экране измерительный инструмент.

Методы измерения см. в разделе «4.3 Инструменты для абдоминальных измерений» и описании этапов в разделе «3 Общие измерения».

4. Нажмите клавишу <Report> (Отчет), чтобы посмотреть отчет об исследовании (подробнее см. в разделе «4.5 Отчет об абдоминальном исследовании»).

4.3 Инструменты для абдоминальных измерений

ПРИМЕЧАНИЕ: Упоминаемые ниже инструменты сконфигурированы в системе. Как правило, пакеты специальных измерений, предоставляемые системой, являются различными сочетаниями измерительных инструментов.

Ниже перечислены измерения, расчеты и исследования для двумерного (2D) и допплеровского режима (но для измерений в М-режиме):

Абдоминальные измерения в режиме 2D

Типы	Инструменты	Описания	Методы или формулы	
	Печен	1		
	L почки	Длина почки		
	Н почки	Высота почки		
	W почки	Ширина почки		
	Кора	Кортикальная толщина почки		
	L надпоч.	Длина надпочечника		
	Н надпоч.	Высота надпочечника	«Отрезок» в общих измерениях в режиме 2D	
	W надпоч.	Ширина надпочечника		
	CBD	Общий желчный проток		
Измерение	Диам.вор.вены	Диаметр воротной вены		
	CHD	Общий печеночный проток		
	GB L	Длина желчного пузыря		
	GB H	Высота желчного пузыря		
	Толщ. GB	Толщина стенок желчного пузыря		
	Утк. п/ж	Проток поджелудочной железы		
	Гол. п/ж	Головка поджелудочной железы		
	Тело п/ж	Тело поджелудочной железы		
	Хв. п/ж	Хвост поджелудочной железы		
	Селез.	1		
	Диам.аорт	Диаметр аорты		
	Биф. аорты	1		
	Подвз.диа	Подвздошный диаметр	«Отрезок» в общих	
	Pre-BL L	Длина мочевого пузыря до опорожнения	измерениях в режиме 2D	
Измерение	Pre-BL H	Высота мочевого пузыря до опорожнения		
·	Pre-BL W	Ширина мочевого пузыря до опорожнения		
	Post-BL L	Длина мочевого пузыря после опорожнения		
	Post-BL H	Высота мочевого пузыря после опорожнения		
	Post-BL W	Ширина мочевого пузыря после опорожнения		
Расчет	Vol почки	Объем почки	См. раздел «Vol почки».	

Типы	Инструменты	Описания	Методы или формулы
	Pre-BL Vol	Объем мочевого пузыря до опорожнения	См. раздел «Pre-BL Vol».
	Post-BL Vol	Объем мочевого пузыря после опорожнения	См. раздел «Post-BL Vol».
	Об.мочи	Объем мочеиспускания	См. раздел «Об.мочи».
Исследование	Почка	1	См. раздел «Почка».
	Надпоч.	1	См. раздел «Надпоч.».
	Пузырь	1	См. раздел «Пузырь».

Допплеровские абдоминальные измерения

Типы	Инструменты	Описания	Методы или формулы
	Нач.поч.а	Начало почечной артерии	
	Дуг/обр.а	Дугообразная артерия	
	Сегмент.а	Сегментальная артерия	
	Междол.а	Междолевая артерия	
	Поч.арт	Почечная артерия	
	Гл поч.а	Главная почечная артерия	
	Поч.вен	Почечная вена	
	Аорта	1	
	Чревный ствол	1	
	SMA	Верхняя брыжеечная артерия	
Измерение	ОПечА	Общая печеночная артерия	«Д конт.» в общих допплеровских
	Печен.арт	Печеночная артерия	измерениях
	Селез.арт	Селезеночная артерия	
	IVC	Нижняя полая вена	
	ВоротВ	Воротная вена	
	СВоротВ	Средняя воротная вена	
	Печен.вен	Печеночная вена	
	Л ПечВ	Левая печеночная вена	
	П ПечВ	Правая печеночная вена	
	СПечВ	Средняя печеночная вена	
	Селез.вен	Селезеночная вена	
	SMV	Верхняя брыжеечная вена	
Расчет	/	/	
Исследование	/	/	

4.4 Выполнение абдоминальных измерений

Советы:	1.	Инструменты и методы измерения см. выше в таблице раздела «4 Инструменты для абдоминальных измерений».
	2.	Определения измерения, расчета и исследования см. в разделе «1.3 Измерение, расчет и исследование».
	3.	Очередность измерений устанавливается предварительно (подробнее см. в разделе «2.4.2 Предварительная установка специальных измерений»).
	4.	Инструмент измерения можно активировать, выбрав его в меню измерений или в меню сенсорного экрана.

- 1. В меню измерения выберите пункт/инструмент.
- 2. Выполните измерение, используя методы из приведенной выше таблицы.

4.5 Отчет об абдоминальном исследовании

Во время или по окончании измерения нажмите клавишу <Report> (Отчет) на панели управления, чтобы просмотреть отчет.

Подробнее о просмотре, печати, экспорте и других операциях с отчетом см. в разделе «1.7 Отчет».

5 Акушерство

Акушерские измерения используются для оценки GA и EDD, расчета показателей роста, в том числе EFW. Оценка роста определяется кривой роста и биофизическим профилем плода.

5.1 Подготовка акушерского исследования

Прежде чем выполнять измерение, выполните следующие подготовительные процедуры:

- 1. Подтвердите правильность выбора текущего датчика.
- 2. Проверьте правильность текущей даты системы.
- 3. Нажмите клавишу <Patient> (Пациент), зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [OB].

Подробнее см. в разделе «Подготовка к исследованию -> Сведения о пациенте» руководства оператора [Стандартные процедуры].

4. Переключитесь на подходящий режим обследования.

ВНИМАНИЕ: Убедитесь, что в системе установлена правильная дата, иначе вычисленные значения GA и EDD будут неверными.

5.2 Основные процедуры измерения

1. Нажмите клавишу <Patient> (Пациент), зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [OB].

Клинический гестационный возраст рассчитывается при вводе соответствующих данных на этой странице (подробнее см. в разделе «5.3.1 Клинический гестационный возраст»).

- 2. Нажмите клавишу <Measure> (Измерить), чтобы перейти к специальным измерениям.
- 3. Чтобы начать измерение, выберите в меню или на сенсорном экране измерительный инструмент.

Инструменты измерения см. ниже в таблице раздела «5.4 Инструменты для акушерских измерений».

Методы измерения см. в разделе «5.5 Выполнение акушерских измерений» и описании этапов в разделе «3 Общие измерения».

4. Нажмите клавишу <Report> (Отчет), чтобы посмотреть отчет об исследовании (подробнее см. в разделе «5.7 Отчет об акушерском исследовании»).

5.3 Гестационный возраст (GA)

5.3.1 Клинический гестационный возраст

GA (Гестационный возраст) и EDD (Предполагаемая дата родов) рассчитываются согласно клиническим параметрам.

1. Нажмите клавишу <Patient> (Пациент), зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [OB].

Система автоматически рассчитывает GA и EDD после ввода соответствующей информации.

Ниже перечислены метода расчета:

- LMP: при вводе LMP система вычисляет GA и EDD.
- IVF: после ввода IVF система вычислит GA и EDD.
- PRV: при вводе этой даты и GA, полученного в последнем исследовании, система вычислит новый GA и EDD.
- ВВТ: после ввода ВВТ система вычислит GA и EDD.
- EDD: при вводе EDD система вычисляет GA и LMP.
- 2. Клинический гестационный возраст указывается в начале отчета.

Советы: При наличии нескольких допустимых расчетов EDD и GA в качестве окончательного значения берется самый последний расчет EDD и GA.

5.3.2 Ультразвуковой гестационный возраст

Ультразвуковые GA и EDD рассчитываются согласно параметрам, полученным при измерении.

- GA в акушерских инструментах
- AUA (Средний ультразвуковой возраст)
- CUA (Составной ультразвуковой возраст)

GA в акушерских инструментах

В акушерских инструментах гестационный возраст рассчитывается с помощью соответствующих таблиц/формул гестационного возраста и не зависит от клинического гестационного возраста.

- На странице [Предуст.сист.] -> [OB] можно предварительно установить формулы гестационного возраста и указать, отображать ли SD и EDD (подробнее см. в разделе «2.3 Акушерские предварительные установки»).
- 2. После измерения гестационный возраст и другие значения измерений отображаются в окне результатов.

Если диагностический гестационный возраст превышает пороговое значение, то он отображается в окне результатов как OOR (Вне диапазона) и не включается в отчет.

- 3. Гестационный возраст, полученный с помощью акушерских инструментов, отображается в правой части результатов измерения.
- 4. Для значений результатов, используемых при расчете параметров GA (Гестационный возраст) и EDD (Предполагаемая дата родов), в столбце [Формула] можно выбрать формулу, применяемую для расчета.

AUA

AUA — это среднее значение допустимых значений гестационного возраста, которые рассчитываются согласно бипариетальному диаметру (BPD), окружности головы (HC), окружности живота (AC), длины плечевой кости (HL), околоплодного мешка (GS), крестцовотеменного расстояния (CRL) и т. д.

1. Все допустимые значения вышеупомянутых параметров будут использованы в расчете АUA методом по умолчанию, заданным в системе. 2. Чтобы указать параметры, используемые для расчета AUA, установите флажки справа от них. Значение AUA меняется в зависимости от выбора параметров.

LMP:	GA :	EDD(LMP):		AUA	1 6w0d	EDD (AUA) : 17/05	5/2012
	Формул	а Знач	1	2	3	Мет GA	Диап
2D Измерен	ия						
BPD	Hadlock	3 . 03cm	3. 03			СРД 15w4d	
HC	Hadlock	v 8.13cm	8.13			СРД 🚽 13w3d	
AC	Hadlock	13.62cm	13.62			СРД 🚽 19w1d	

CUA

CUA рассчитывается по формуле на основе некоторых измерений (в число которых входят бипариетальный диаметр (BPD), окружность головы (HC), окружность живота (AC) и длина плечевой кости (HL)). При расчете CUA все параметры гестационного возраста должны вычисляться по формуле Hadlock и измеряться в см. CUA при этом измеряется в неделях. Вот эти формулы:

- 1. CUA(BPD) = 9,54+1,482*BPD+0,1676*BPD2
- 2. CUA(HC) = 8,96+0,540*HC+0,0003*HC3
- 3. CUA(AC) = 8,14+0,753*AC+0,0036*AC2
- 4. CUA(FL) = 10,35+2,460*FL+0,170*FL2
- 5. CUA(BPD, HC) = 10,32+0,009*HC2+1,3200*BPD+0,00012*HC3
- 6. CUA(BPD, AC) = 9,57+0,524*AC+0,1220*BPD2
- 7. CUA(BPD, FL) = 10,50+0,197*BPD*FL+0,9500*FL+0,7300*BPD
- 8. CUA(HC, AC) = 10,31+0,012*HC2+0,3850*AC
- 9. CUA(HC, FL) = 11,19+0,070*HC*FL+0,2630*HC
- 10. CUA(AC, FL) = 10,47+0,442*AC+0,3140*FL2 0,0121*FL3
- 11. CUA(BPD, HC, AC) = 10,58+0,005*HC2 +0,3635*AC+ 0,02864*BPD*AC
- 12. CUA(BPD, HC, FL) = 11,38+0,070*HC*FL+0,9800*BPD
- 13. CUA(BPD, AC, FL) = 10,61+0,175*BPD*FL+0,2970*AC+0,7100*FL
- 14. CUA(HC, AC, FL) = 10,33+0,031*HC*FL+0,3610*HC+0,0298*AC*FL
- 15. CUA(BPD, HC, AC, FL)=10,85+0,060*HC*FL+0,6700*BPD+0,1680*AC

По умолчанию для вычисления CUA задана формула, использующая больше измеряемых параметров. Кроме того, параметры можно выбрать, установив флажки справа от них.

Акушерский процентиль роста

Акушерский процентиль роста используется для оценки роста плода. Он вычисляется для определения разницы между результатами ультразвукового измерения и результатами измерения, соответствующими клиническому гестационному возрасту в таблице роста плода. Процентиль не вычисляется, когда нет клинического гестационного возраста и таблицы роста плода, или если в пункте «Тип SD» таблицы роста плода указано «Нет».

Предварительное условие: данные в таблице роста плода соответствуют (приблизительно) нормальному распределению, и верно неравенство: нижний предел < среднее значение < верхний предел.

Система не рассчитывает акушерский процентиль роста, если:

- Таблица роста плода не соответствует нормальному распределению.
- В таблице роста плода не задано верхнее/нижнее отклонение.
- В таблице роста плода установлено верхнее/нижнее отклонение, но у некоторых клинических значений гестационного возраста отсутствует верхнее/нижнее отклонение, или величина отклонения неположительная. На кривую роста плода это не влияет. Например, таблица роста плода для RAD (автор: Jeanty).

Акушерский процентиль роста отображается в окне результатов, отчете об измерении, экспортируемом отчете в формате PDF/RTF и в акушерском структурированном отчете. Он поддерживает функции предварительного просмотра печати и печати.

5.4 Инструменты для акушерских измерений

Система поддерживает следующие инструменты акушерских измерений в режиме 2D/M/Doppler (Допплер).

ПРИМЕЧАНИЕ: Упоминаемые ниже инструменты сконфигурированы в системе. Как правило, пакеты специальных измерений, предоставляемые системой, являются различными сочетаниями измерительных инструментов. Подробнее о предварительной установке пакетов см. в разделе «2.4.2.2 Предварительная установка специальных измерений».

Акушерские измерения в режиме 2D

Типы	Инструменты	Описания	Методы или формулы	
	GS	Диаметр околоплодного мешка	«Отрезок» в общих	
	YS	Желточный мешок	измерениях в режиме 20	
Измерение	CRL	Крестцово-теменное расстояние	«Лин.» (то же самое, что и «Отрезок» в общих измерениях в режиме 2D), «Отмеч», «Сплайн»	
	NT	Затылочная прозрачность	«Отрезок» в общих измерениях в режиме 2D	
	BPD	Бипариетальный диаметр		
	OFD	Затылочно-лобный диаметр		
	HC ¹	Окружность головы	измерениях в режиме 2D	
	AC	Объем живота		
	FL	Длина бедренной кости		

¹ Окружность головы: если при измерении окружности головы (HC) на экране появляется измерительный курсор бипариетального диаметра (BPD), то начальная точка измерения автоматически устанавливается в начальную точку измерения последнего BPD; если окружность головы измеряется методом «Эллипс», измерительный курсор последнего BPD будет первой осью эллипса в режиме по умолчанию.

Типы	Инструменты	Описания	Методы или формулы	
	TAD	Поперечный брюшной диаметр		
	APAD	Переднезадний абдоминальный диаметр		
	TCD	Диаметр мозжечка		
	Цистерна магна	Цистерна магна		
	LVW	Поперечная ширина желудочка		
	HW	Ширина полушария		
	OOD	Внешний диаметр орбиты		
	IOD	Межорбитальный диаметр		
	НИМ	Длина плечевой кости		
	Локт.	Длина локтевой кости		
	RAD	Длина лучевой кости	«Отрезок» в общих	
	Голен	Длина большеберцовой кости	измерениях в режиме 2D	
	FIB	Длина малоберцовой кости		
	CLAV	Длина ключицы		
	Позвонки	Длина позвонка		
	MP	Длина средней фаланги		
	Нога	Длина стопы		
	Ухо	Длина уха		
	APTD	Переднезадний диаметр туловища		
Измерение	TTD	Поперечный диаметр туловища		
	FTA	Площадь поперечного сечения туловища плода	«Площ» в общих измерениях в режиме 2D	
	THD	Торакальный диаметр	«Отрезок» в общих измерениях в режиме 2D	
	HrtC	Окружность сердца	«Площ» в общих измерениях	
	ТС	Окружность груди	в режиме 2D	
	Umb VD	Диаметр пупочной вены	«Отрезок» в общих измерениях в режиме 2D	
	П-почка	Длина почки плода		
	Мат почки	Длина матрицы почки		
	L Шейк	Длина шейки матки	«Отрезок» в общих измерениях в режиме 2D	
	AF	Амниотическая жидкость		
	NF	Шейная складка		

Типы	Инструменты	Описания	Методы или формулы	
	Орбита	Орбита		
	Толщина PL	Плацентарная толщина		
	Диам пуз1	Диаметр околоплодного мешка 1		
	Диам пуз2	Диаметр околоплодного мешка 2		
	Диам пуз3	Диаметр околоплодного мешка 3		
	AF1	Амниотическая жидкость 1		
	AF2	Амниотическая жидкость 2		
	AF3	Амниотическая жидкость 3		
	AF4	Амниотическая жидкость 4		
	LVIDd	Конечно-диастолический внутренний диаметр левого желудочка	«Отрезок» в общих	
	LVIDs	Конечно-систолический внутренний диаметр левого желудочка	измерениях в режиме 2D	
	Диам.LV	Диаметр левого желудочка		
	Диам.LA	Диаметр левого предсердия		
	RVIDd	Конечно-диастолический внутренний диаметр правого желудочка		
	RVIDs	Конечно-систолический внутренний диаметр правого желудочка		
	Диам.RV	Диаметр правого желудочка		
	Диам.RA	Диаметр правого предсердия		
Измерение	IVSd	Конечно-диастолическая толщина межжелудочковой перегородки		
	IVSs	Конечно-систолическая толщина межжелудочковой перегородки	«Отрезок» в общих	
	IVS	Толщина межжелудочковой перегородки	измерениях в режиме 2D	
	Площ.LV	Площадь левого желудочка		
	Площ. LA	Площадь левого предсердия		

Типы	Инструменты	Описания	Методы или формулы
	Площ.RV	Площадь правого желудочка	
	Площ.RA	Площадь правого предсердия	
	Диам.Ао	Диаметр аорты	
	Диа. МРА	Диаметр главной легочной артерии	
	Диам.LVOT	Диаметр выносящего тракта левого желудочка	
	Диам.RVOT	Диаметр выносящего тракта правого желудочка	
	Лицевой угол	Угол между двумя линиями: одна от основания носа плода до лба, другая от основания носа до основания уха.	«Угол» в общих измерениях в режиме 2D
	HrtA	Площадь сердца	«Площ» в общих измерениях в режиме 2D
	Диам.MV	Диаметр митрального клапана	
	ДмтрРV	Диаметр клапана легочной артерии	
	Диам. ВАо	Диаметр восходящей аорты	
	Диам. НАо	Диаметр нисходящей аорты	
	Диам арт прот	Диаметр артериального протока	«Отрезок» в общих
	Диаметр TV	Диаметр трехстворчатого клапана	измерениях в режиме 2D
	Диам LPA	Диаметр левой легочной артерии	
	Диам RPA	Диаметр правой легочной артерии	
	Диам IVC	Диаметр нижней полой вены	
Расчет	Ср.диам.меш.	Средний диаметр околоплодного мешка	Среднее значение трех диаметров мешка
	AFI	/	Измерение максимального объема амниотической жидкости в четырех карманах амниотической жидкости у беременных женщин. AFI = AF1+AF2+AF3+AF4
	ПВП;	Расчетный вес плода 1	EFW рассчитывается

Типы	Инструменты	Описания	Методы или формулы
	EFW2	Расчетный вес плода 2	согласно формуле по умолчанию для EFW на основе нескольких измеряемых параметров (см. раздел «2.3.1 Акушерская формула»). В акушерском отчете можно выбрать другие формулы.
	HC/AC	/	HC/AC
	FL/AC	1	FL/AC×100
	FL/BPD	1	FL/BPD ×100 %
	ПЗД	1	APTD × TTD
	CI	1	BPD/OFD ×100 %
	ДБ/ОГ	1	FL/AC×100
	HC(c)	1	$HC(c) = 2,325 \times (BPD^2 + OFD^2)^{1/2}$
	HrtC/TC	1	HrtC/TC
	TCD/AC	1	TCD/AC
	LVW/HW	1	LVW/HW × 100 %
	LVD/RVD	1	Диам.LV/Диам.RV
	LAD/RAD	1	Диам.LA/Диам.RA
	AoD/MPAD	1	Диам.Ао/Диа. МРА
	LAD/AoD	1	Диам.LA/Диам.Ao
Исследование	AFI	1	Измеряются AF1, AF2, AF3, AF4, рассчитывается AFI

Акушерские измерения в М-режиме

Типы	Инструменты	Описания	Методы или формулы
Измерение	FHR	Частота сердечных сокращений плода	«HR» в общих измерениях в М-режиме
	LVIDd	Конечно-диастолический диаметр левого желудочка (поперечное сечение)	«Отрезок» в общих измерениях в режиме 2D
	LVIDs	Конечно-систолический диаметр левого желудочка (поперечное сечение)	
	RVIDd	Конечно-диастолический диаметр правого желудочка (поперечное сечение)	

Типы	Инструменты	Описания	Методы или формулы
	RVIDs	Конечно-систолический диаметр правого желудочка (поперечное сечение)	
	IVSd	Конечно-диастолическая толщина межжелудочковой перегородки	
	IVSs	Конечно-систолическая толщина межжелудочковой перегородки	
Расчет	1	1	
Исследование	1	1	

Акушерские измерения в допплеровском режиме

Типы	Инструменты	Описания	Методы или формулы
Измерение	Пуп.ар	Пупочная артерия	«Д конт.» в общих допплеровских измерениях
	Вен.прот.	Венозный проток	
	Плацен.ар	Плацентарная артерия	
	MCA	Средняя мозговая артерия	
	Ао плода	Аорта плода	
	Нисх.аорта	Нисходящая аорта	
	АМат	Маточная артерия	
	Ар.яичн	Артерия яичника	
	FHR	Частота сердечных сокращений плода	«HR» в общих допплеровских измерениях
Расчет	1	1	
Исследование	/	1	

5.5 Выполнение акушерских измерений

Выполнение измерения, расчета и исследования описывается на примерах.

Советы: 1. Инструменты и методы измерения см. выше в таблице раздела «5.4 Инструменты для акушерских измерений».

- 2. Определения измерения, расчета и исследования см. в разделе «1.3 Измерение, расчет и исследование».
- 3. Очередность измерений устанавливается предварительно (подробнее см. в разделе «2.4.2 Предварительная установка специальных измерений»).
- Инструмент измерения можно активировать, выбрав пункт в меню измерения или на сенсорном экране, далее это описывается как «Выберите/нажмите ... (определённый пункт) в меню измерения».

5.5.1 Работа с инструментами измерений

В качестве примера рассмотрим измерение окружности головы (НС).

1. В меню измерения выберите пункт/инструмент [HC].

Как выбрать метод в режиме реального времени, см. в разделе «Выбор метода измерения в режиме реального времени».

2. Измерьте площадь методом «Площ» для общих измерений в режиме 2D.

Результаты измерения, расчет гестационного возраста и акушерский процентиль роста отобразятся в окне результатов.

На странице [Предуст.сист.] -> [OB] -> [GA] можно предварительно установить, отображать ли EDD.

Подробнее о гестационном возрасте см. в разделе «5.3 Гестационный возраст (GA)».

Акушерские измерения в автоматическом режиме (Smart OB)

Обычные акушерские измерения можно выполнять в автоматическом режиме. Порядок действий следующий:

- 1. Получите нужное изображение.
- 2. Выберите инструмент акушерского измерения в меню, и выберите метод [Авто].
- 3. Измеритель будет автоматически нарисован на изображении.

Если результаты автоматического измерения не полностью соответствуют изображению, можно изменить положение измерителя вращением трекбола.

4. Нажмите клавишу <Set>, чтобы подтвердить измерение.

Или нажмите <Update>/<Clear>, чтобы изменить положение измерителя и уточнить результат.

5.5.2 Работа с инструментами вычислений

Для примере рассмотрим измерение HC/AC.

- 1. В меню измерения выберите пункт/инструмент [HC/AC].
- 2. Измерьте окружность головы (HC) и окружность живота (AC) методом «Площ» для общих измерений в режиме 2D.

Второе измерение активируется автоматически по завершении первого измерения. По завершении измерения результаты отображаются в окне результатов.
5.5.3 Работа с инструментами исследования

Измерение AFI выполняется следующим образом.

- 1. В меню измерения выберите пункт [AFI]. Откройте подменю.
- 2. Измерьте максимальный объем амниотической жидкости в четырех карманах амниотической жидкости у беременных женщин, и AFI рассчитается автоматически.

5.6 Исследование в случае многоплодной беременности

Система позволяет исследовать несколько плодов (не более 4).

ПРИМЕЧАНИЕ: Убедитесь, что в меню для исследования нескольких плодов отображается плод, на котором требуется произвести измерения.

Порядок выполнения измерений аналогичен акушерским измерениям.

1. Установите число плодов в поле [Беремен.] на странице [Инф.пациента] -> [OB].

Если значение в поле [Беремен.] больше 1, то в меню акушерских измерений и на сенсорном экране отображается пункт [Плод], как показано на рисунке ниже.

(в меню)

(на сенсорном экране)

С его помощью можно переключаться между плодами: [Плод А], [Плод В], [Плод С] или [Плод D] (или кнопка [Плод] на сенсорном экране).

2. Выполните соответствующие измерения для плода.

Результаты измерений в окне результатов помечаются буквой, соответствующей плоду — А, В или С.

1	HC(A)	10.64 cm 35.9 %
	GA	15w0d ±1w1d
2	HC(B)	10.89 cm 45.6 %
	GA	15w2d ±1w1d

- 3. В акушерском отчете выберите [Плод А], [Плод В] или [Плод С], чтобы переключиться между результатами для различных плодов.
- 4. В нижней части диалогового окна [Гинекол.кривая роста] выберите [А], [В] или [С], чтобы вывести на экран кривые роста различных плодов.
 - Данные плода А/плода В/плода С: для идентификации данных измерений различных плодов на кривых роста используются три символа — +××.
 - Прошлые/текущие данные: для того чтобы различать текущие и прошлые данные, используются символы разных размеров, причем прошлые данные указываются меньшими символами.

5.7 Отчет об акушерском исследовании

Во время или по окончании измерения нажмите клавишу <Report> (Отчет) на панели управления, чтобы просмотреть отчет.

Отчет об исследовании нескольких плодов см. в разделе «5.6 Исследование в случае многоплодной беременности».

Подробнее о просмотре, печати, экспорте и других операциях с отчетом см. в разделе «1.7 Отчет».

5.7.1 Биофизический профиль плода

Биофизический профиль плода предназначен для того, чтобы сначала с помощью эксперимента или измерения получить несколько показателей, связанных с ростом плода, а затем оценить опасную ситуацию для плода, классифицировав эти показатели соответствующим образом.

1. На странице акушерского отчета нажмите кнопку [Анализ], и после анализа плода перечислятся баллы плода.

Оценка плода	
FHR	2 ▼ Рекативн. FHR≥15 уд./мин, длительн. ≥15 с. ≥2
FM	0 ▼ FM≤2 p a 3
FBM	2 ▼ FBM≥1 раз,длит. ≥30 с
FT	0 🔽 Конеч. распр, без изгибов, пальцы своб
AF	2 ▼ Об. 1 или более AF ≥2x2 см
Всего	6 Подозрение на хронич, асфиксию

В системе используются критерии начисления баллов, основанные на формуле Vintzileos, приведенной в следующей таблице.

Индекс роста плода	0 баллов	2 балла	Время наблюдения	Примечания	
FHR	 <2, или реактивная FHR ≤15 уд./мин Pеактивная FHR ≥15 уд./мин, длительрность≥15 с ≥2 раз 		30 минут	инут	
FM	≥2 движений плода	FM ≥3 раз (непрерывное движение считается 1 разом)	30 минут	Баллы можно	
FBM	Нет FBM, или продолжительность ≤30 с	FBM≥1 раза; продолжительность ≥30 с	30 минут	систему вручную.	
FT	Конечности распрямлены, не согнуты, пальцы не сжаты	Сгибание и разгибание конечностей и позвоночника ≥1 раза	1		

Индекс роста плода	0 баллов	2 балла	Время наблюдения	Примечания
AF	Нет АF, или объем AF <2×2 см	Один или несколько объемом AF > 2×2 см	/	

Балльная шкала оценки плода:

Сумма баллов	Условие роста
8—10 баллов	Норма, низкий риск хронической асфиксии
4—6 баллов	Подозрение на хроническую асфиксию
0—2 балла	Высокий риск хронической асфиксии

2. Баллы по каждому показателю вместе с общей суммой прилагаются к отчету.

5.7.2 Полоса сравнения

Эта функция позволяет сравнить клинический гестационный возраст, гестационный возраст, полученный при ультразвуковом акушерском измерении, и AUA (CUA).

- 1. Введите основные сведения и акушерские данные пациента в диалоговом окне [Ин.пац.] -> [Ги].
- 2. Выполните измерения параметров ГВ с помощью одного или нескольких инструментов.
- 3. В диалоговом окне отчета нажмите кнопку [Полоса сравнения], чтобы открыть следующее диалоговое окно.

								GA (LMP) ———
	Ow	1 Ow	20w	30w	40w			GA (AUA) ·
	-					AUA		
BPD(Hadlock)			X			√ √	15w4d	14w3d-16w5d
HC(Hadlock)		X	<u> </u>			. √	13w3d	12w2d-14w4d
AC(Hadlock)			i — X — —			. √	19w1d	17w1d-21w1d

■ Установите флажок [Печ.], чтобы включить полосу сравнения в печатный отчет.

5.7.3 Z-счет

Поскольку FL, BPD и GA больше всего соответствуют структуре сердца плода, и уравнение регресси Z-счёта соответствует натуральному логарифму значений FL, BPD and GA, то с помощью соответствующих таблиц можно определить Z-счёт структур сердца плода; он важен для оценки развития сердца плода и внутриутробной инвазивной терапии.

In (предсказанные размеры сердца)=m*In(FL, GA или BPD)+с

Z-счёт=(In(фактический)-In(предсказанный размер сердца))/СКО

Здесь FL и BPD указаны в см, GA в неделях, m - множитель, с - свободный член уравнения, CKO - среднеквадратическое отклонение, которое берётся из таблицы.

- 1. Введите основные сведения и акушерские данные пациента в диалоговом окне [Ин.пац.] -> [Ги].
- 2. Измерьте BPD и FL.
- 3. Измерьте парметры сердца плода (например, Диам. Ао).
- 4. Откройте отчёт, чтобы проверить значение Z-счёта.

Советы: Анализ Z-счёта эффективен для плода возрастом 15~40 недель.

5.7.4 Кривая роста плода

Кривая роста плода позволяет сравнить данные измерений плода с нормальной кривой роста, чтобы определить, нормально ли развивается плод. Все данные кривой роста берутся из таблицы роста плода.

- 1. В диалоговом окне [Инф.пациента] -> [OB] введите сведения и акушерские данные пациента.
- 2. Выполните измерения параметров роста с помощью одного или нескольких инструментов.
- 3. На странице отчета нажмите кнопку [Рост], чтобы открыть диалоговое окно акушерской кривой роста. В этом диалоговом окне отображается кривая роста и позиция измеряемой величины.
- В раскрывающихся списках над кривой отображаются пункты/инструменты измерения и формула кривой, которые можно заменить.
- для идентификации данных измерений различных плодов на кривых роста используются три символа +××.
- Текущие и прошлые данные каждого плода помечаются одним и тем же значком, причем прошлые данные помечаются значком меньшего размера.
- Установите или уберите флажок [Печ.], чтобы включить или не включать кривую роста в печатный отчет.
- Зеленая пунктирная линия показывает клинический гестационный возраст на оси Х.
- В разделе [Режим отобр.] выберите количество и расположение кривых.
 - 1*1: на экране отображается одна кривая.
 - 2*1: на экране отображаются две кривые (одна над другой).
 - 2*2: на экране отображаются четыре кривые.
- Чтобы перейти к другим страницам кривой роста, нажмите кнопку [Пред.стр.]/[Далее].
- 4. Нажмите [Готов], чтобы подтвердить настройку и покинуть страницу.

Советы: Если поле идентификатора пациента не заполнено, клинический гестационный возраст не рассчитан, или при измерении получено недопустимое значение, то значения измерения не будут отображаться на кривой.

5.8 Литература

GS

Rempen A., 1991

Arztliche Fragen. Biometrie in der Fruhgraviditat (i. Trimenon): (Проблемы врача: биометрия на ранних сроках беременности (I триместр):) 425-430.

Hansmann M, Hackelöer BJ, Staudach A.

Ultraschalldiagnostik in Geburtshilfe und Gynäkologie (Ультразвуковая диагностика в акушерстве и гинекологии). 1985

Hellman LM, Kobayashi M, Fillisti L, et al. Growth and development of the human fetus prior to the 20th week of gestation (Рост и развитие плода человека до 20-ой недели беременности). Am J Obstet Gynecol 1969; 103:784-800.

Studies on Fetal Growth and Functional Developments (Исследования роста и функционального развития плода). Takashi Okai, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo

	China Авторы: Zhou Yiongchang & Guo Wanxue Глава 38 книги Ultrasound Medicine (Ультразвуковая медицина), (3rd edition) Science & Technology Literature Press, 1997
CRL	Rempen A., 1991 Arztliche Fragen. Biometrie in der Fruhgraviditat (i.Trimenon): (Проблемы врача: биометрия на ранних сроках беременности (I триместр):) 425-430.
	Hansmann M, Hackelöer BJ, Staudach A Ultraschalldiagnostik in Geburtshilfe und Gynäkologie, 1985.
	Hadlock FP, et al. Fetal Crown-Rump Length: Reevaluation of Relation to Menstrual Age (5-18 weeks) with High-Resolution Real-time US (Крестцово-теменное расстояние: Переоценка взаимосвязи с возрастом, рассчитанным по менструальному циклу (5-18 недель) с применением УЗИ высокого разрешения в режиме реального времени). Radiology 182:501-505.
	Jeanty P, Romero R. Obstetrical Sonography (Акушерская сонография). p. 56. New York, McGraw-Hill, 1984.
	Nelson L. Comparison of methods for determining crown-rump measurement by realtime ultrasound (Сравнение методов определения крестцово- теменного расстояния методом УЗИ в режиме реального времени). J Clin Ultrasound February 1981; 9:67-70.
	Robinson HP, Fleming JE. A critical evaluation of sonar crown rump length measurements (Важная оценка измерений крестцово-теменного расстояния ультразвуковым методом). Br J Obstetric and Gynaecologic September 1975; 82:702-710.
	Fetal Growth Chart Using the Ultrasonotomographic Technique (Диаграммы кривых роста плода с применением ультрасонотомографии).Keiichi Kurachi, Mineo Aoki Department of Obstetrics and Gynecology, Osaka University Medical SchoolRevision 3 (September 1983).
	Studies on Fetal Growth and Functional Developments (Исследования роста и функционального развития плода) Takashi Okai, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo.
	British Medical Ultrasound Society. Fetal size and dating: charts recommended for clinical obstetric practice, August 2009; http://www.bmus.org/policies-guides/pg-fetalmeas.asp. accessed May 2011. China
	Авторы: Zhou Yiongchang & Guo Wanxue
	Глава 38 книги Ultrasound Medicine (Ультразвуковая медицина), (3rd edition) Science & Technology Literature Press, 1997

Merz E., Werner G. & Ilan E. T., 1991, Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.

Rempen A., 1991 Arztliche Fragen. Biometrie in der Fruhgraviditat (i.Trimenon): (Проблемы врача: биометрия на ранних сроках беременности (I триместр):) 425-430.

Hansmann M, Hackelöer BJ, Staudach A Ultraschalldiagnostik in Geburtshilfe und Gynäkologie (Ультразвуковая диагностика в акушерстве и гинекологии), 1985

Jeanty P, Romero R. Obstetrical Ultrasound (Ультразвук в акушерстве). McGraw-Hill Book Company, 1984, pp. 57-61.

Sabbagha RE, Hughey M. Standardization of sonar cephalometry and gestational age (Стандартизация данных ультразвуковой цефалометрии и вычислений гестационного возраста). Obstetrics and Gynecology October 1978; 52:402-406.

Kurtz AB, Wapner RJ, Kurtz RJ, et al. Analysis of bipariental diameter as an accurate indicator of gestational age (Анализ данных бипариетального диаметра в качестве точного индикатора гестационного возраста). J Clin Ultrasound 1980;8:319-326.

Fetal Growth Chart Using the Ultrasonotomographic Technique (Диаграммы кривых роста плода с применением ультрасонотомографии), Keiichi Kurachi, Mineo Aoki, Department of Obstetrics and Gynecology, Osaka University Medical School Revision 3 (September 1983)

Studies on Fetal Growth and Functional Developments (Исследования роста и функционального развития плода). Takashi Okai, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo

Chitty LS, Altman DG British Journal of Obstetrics and Gynaecology January 1994, Vol.101 P29-135.

China

Авторы: Zhou Yiongchang & Guo Wanxue

Глава 38 книги Ultrasound Medicine (Ультразвуковая медицина), (3rd edition) Science & Technology Literature Press, 1997

OFDMerz E., Werner G. & Ilan E. T., 1991Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и
атлас по применению ультразвука в гинекологии и акушерстве) 312,
326-336.

Hansmann M, Hackelöer BJ, Staudach A Ultraschalldiagnostik in Geburtshilfe und Gynäkologie, 1985.

BPD

нс	Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.
	Jeanty P, Romero R. Obstetrical Ultrasound (Ультразвук в акушерстве). McGraw-Hill Book Company, 1984.
	Hadlock FP, et al. Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters (Оценка возраста плода: автоматизированный анализ множественных параметров роста плода). Radiology 1984; 152 (No. 2):499.
	Hansmann M, Hackelöer BJ, Staudach A Ultraschalldiagnostik in Geburtshilfe und Gynäkologie 1985.
	Chitty I.S. Altman DG
	British Journal of Obstetrics and Gynaecology January 1994, Vol.101. P29-135.
	Chitty L.S., Altman D.G., Hendesson A., Campell S., Charts of fetal size: 2 Head measurements, Br J Obstetric Gynecology 1994, Vol 101, P 35-43.
	Altmann D.G.; Chitty L.S. "New charts for ultrasound dating of pregnancy" Ultrasound in Obstetrics and Gynecology Vol. 10: 174-191, 1997
AC	Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.
	Hadlock FP, et al. Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters (Оценка возраста плода: автоматизированный анализ множественных параметров роста плода). Radiology 1984; 152 (No. 2):499.
	Jeanty P, Romero R. A longitudinal study of fetal abdominal growth (Продольные исследования абдоминального роста плода). Obstetrical Ultrasound. MacGraw-Hill Book Company, 1984.
	Chitty LS, Altman DG.
	British Journal of Obstetrics and Gynaecology January 1994, Vol.101. P29-135.
	Ultrasound Diagnosis in Obstetrics and Gynecology

Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.

Hansmann M, Hackelöer BJ, Staudach A Ultraschalldiagnostik in Geburtshilfe und Gynäkologie, 1995.

Hadlock FP, et al. Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters (Оценка возраста плода: автоматизированный анализ множественных параметров роста плода). Radiology 1984; 152 (No. 2):499.

Hadlock FP, et al. Estimating Fetal Age: Computer-Assisted Analysis of Multiple Fetal Growth Parameters (Оценка возраста плода: автоматизированный анализ множественных параметров роста плода). Radiology 1984; 152 (No. 2):499.

Warda A. H., Deter R. L. & Rossavik, I. K., 1985. Fetal femur length: a critical re-evaluation of the relationship to menstrual age (Длина бедренной кости плода: Важная переоценка взаимосвязи с возрастом, рассчитанным по менструальному циклу). Obstetrics and Gynaecology, 66,69-75.

O'Brien GD, Queenan JT (1981) Growth of the ultrasound femur length during normal pregnancy (Рост длины бедренной кости по данным УЗИ при нормальном развитии беременности), American Journal of Obstetrics and Gynecology 141:833-837.

Jeanty P, Rodesch F, Delbeke D, Dumont J. Estimation of gestational age from measurements of fetal long bones (Оценка гестационного возраста по

measurements of fetal long bones (Оценка гестационного возраста по измерениям длинных трубчатых костей плода). Journal of Ultrasound Medicine

February 1984; 3:75-79.

Hohler C., Quetel T. Fetal femur length: equations for computer calculation of gestational age from ultrasound measurements (Длина бедренной кости плода: уравнения для автоматизированного вычисления гестационного возраста по ультразвуковым измерениям). American Journal of Obstetrics and Gynecology June 15, 1982; 143 (No. 4):479-481.

Keiichi Kurachi, Mineo Aoki Department of Obstetrics and Gynecology, Osaka University Medical School Revision 3 (September 1983).

Studies on Fetal Growth and Functional Developments (Исследования роста и функционального развития плода)

Takashi Okai, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo.

	Chitty LS, Altman DG. British Journal of Obstetrics and Gynaecology January 1994, Vol.101. P29-135.
	China Авторы: Zhou Yiongchang & Guo Wanxue, Глава 38 книги Ultrasound Medicine (Ультразвуковая медицина, (3rd edition) Science & Technology Literature Press, 1997
TAD	Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.
APAD	Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.
THD	Hansmann M, Hackelöer BJ, Staudach A Ultraschalldiagnostik in Geburtshilfe und Gynäkologie, 1985.
FTA	Fetal Growth Chart Using the Ultrasonotomographic Technique (Диаграммы кривых роста плода с применением ультрасонотомографии). Keiichi Kurachi, Mineo Aoki. Department of Obstetrics and Gynecology, Osaka University Medical SchoolRevision 3 (September 1983).
НОМ	Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.
	Jeanty P, Rodesch F, Delbeke D, Dumont J. Estimation of gestational age from measurements of fetal long bones (Оценка гестационного возраста по измерениям длинных трубчатых костей плода). Journal of Ultrasound Medicine. February 1984; 3:75-79.
CLAV	Clavicular Measurement: A New Biometric Parameter for
	Fetal Evaluation (Измерение ключицы: новый биометрический параметр для оценки плода). Journal of Ultrasound in Medicine 4:467-470, September 1985.
TCD	Goldstein I, et al. Cerebellar measurements with ultrasonography in the evaluation of fetal growth and development (Измерения мозжечка с применением ультрасонографии для оценки роста и развития плода). Am J Obstet Gynecol 1987; 156:1065-1069.

	Hill LM, et al. Transverse cerebellar diameter in estimating gestational age in the large for gestational age fetus (Поперечный диаметр мозжечка для оценки гестационного возраста, в основном - гестационного возраста плода.). Obstet Gynecol 1990; 75:981-985.
Локт.	Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.
Голен	Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.
RAD	Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.
FIB	Merz E., Werner G. & Ilan E. T., 1991 Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.
OOD	Jeanty P, Cantraine R, Cousaert E, et al. J Ultrasound Med 1984; 3: 241-243. GAдни=1,5260298+0,595018*BO мм-6,205*10 ⁻⁶ *BO ² мм BO=бинокулярное расстояние
Ультразвуковой гестационный возраст	Hadlock, Radiology,1984 152:497-501

Расчетный вес плода (EFW)

Merz E., Werner G. & Ilan E. T., 1991, Ultrasound in Gynaecology and Obstetrics Textbook and Atlas (Учебник и атлас по применению ультразвука в гинекологии и акушерстве) 312, 326-336.

Hansmann M, Hackelöer BJ, Staudach A Ultraschalldiagnostik in Geburtshilfe und Gynäkologie (Ультразвуковая диагностика в акушерстве и гинекологии), 1995

Campbell S, Wilkin D. Ultrasonic Measurement of Fetal Abdomen Circumference in the Estimation of Fetal Weight (Ультразвуковые измерения окружности живота плода для определения веса плода). Br J Obstetrics and Gynaecology September 1975; 82 (No. 9):689-697.

Hadlock F, Harrist R, et al. Estimation of fetal weight with the use of head, body, andfemur measurements - a prospective study (Оценка веса плода с помощью измерений головы, тела и бедренной кости). American Journal of Obstetrics and Gynecology February 1, 1985; 151 (No. 3):333-337.

Shepard M, Richards V, Berkowitz R, Warsof S, Hobbins J. An Evaluation of Two Equations for Predicting Fetal Weight by Ultrasound (Оценка двух уравнений, применяемых для предсказания веса плода методом УЗИ). American Journal of Obstetrics and Gynecology January 1982; 142 (No. 1): 47-54.

Fetal Growth Chart Using the Ultrasonotomographic Technique (Диаграммы кривых роста плода с применением ультрасонотомографии), Keiichi Kurachi, Mineo Aoki, Department of Obstetrics and Gynecology, Osaka University Medical School Revision 3 (September 1983)

Studies on Fetal Growth and Functional Developments (Исследования роста и функционального развития плода), Takashi Okai, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tokyo

Биофизический профиль плода

Antory M. intzileos, MD, Winston A. Campbell, Chareles J. Ingardia, MD, and David J. Nochimson, MD. Fetal Biophysical Parameters Distribution and Their Predicted Values (Распределение биофизических параметров плода и их предсказываемые значения). Obstetrics and Gynecology Journal 62:271, 1983.

Процентиль веса в зависимости от возраста

Hadlock FP, Harrist R, Martinez-Poyer J. In utero analysis of fetal growth: A sonographic standard (Внутриутробный анализ роста плода: сонографический стандарт). Radiology 1991;181:129-133.

AFI

Thomas R,Moore MD, Jonathan E, Cayle MD. The amniotic fluid index in normal human pregnancy (Индекс амниотической жидкости при нормальной беременности у людей). American journal of Obstetrics and Gynecology May 1990; 162: 1168-1173.

Z-счет

Schneider C. et. al., "Development of Z-scores for fetal cardiac dimensions from echocardiography", Ultrasound Obstet Gynecol. Vol. 26, 2005: 599-605.

6 Кардиология

6.1 Подготовка кардиологического исследования

Прежде чем выполнять измерение, выполните следующие подготовительные процедуры:

- 1. Подтвердите правильность выбора текущего датчика.
- 2. Проверьте правильность текущей даты системы.
- Нажмите клавишу <Patient> (Пациент) и введите сведения о пациенте на странице [Инф.пациента] -> [CARD].

Подробнее см. в разделе «Подготовка к исследованию -> Сведения о пациенте» руководства оператора [Стандартные процедуры].

4. Переключитесь на подходящий режим обследования.

6.2 Основные процедуры кардиологических измерений

- 1. Нажмите клавишу <Patient> (Пациент) и введите сведения о пациенте на странице [Инф.пациента] -> [CARD].
- 2. Нажмите клавишу <Measure> (Измерить), чтобы перейти к специальным измерениям.
- 3. Чтобы начать измерение, выберите в меню или на сенсорном экране измерительный инструмент.

Инструменты измерения см. в таблице раздела «6.3 Инструменты для кардиологических измерений».

Методы измерения см. в разделе «6.4 Выполнение кардиологических измерений» и описании этапов в разделе «3 Общие измерения».

4. Нажмите клавишу <Report> (Отчет), чтобы посмотреть отчет об исследовании (подробнее см. в разделе «6.5 Отчет по кардиологическому исследованию»).

6.3 Инструменты для кардиологических измерений

Система поддерживает следующие инструменты кардиологических измерений:

ПРИМЕЧАНИЕ: 1. Упоминаемые ниже инструменты сконфигурированы в системе. Как правило, пакеты специальных измерений, предоставляемые системой, являются различными сочетаниями измерительных инструментов. Подробнее о предварительной установке пакетов см. в разделе «2.4.2.2 Предварительная установка специальных измерений».

2.	При измерении интеграла скорости по времени (VTI) сердечное сокращение спектра внутри контура должно совпадать с сердечным сокращением в предварительной установке, иначе полученное значение «HR» (ЧСС) будет неверным. Соответствующую предварительную установку см. в разделе «2.2 Предварительная установка параметров измерений».
3.	Некоторые специальные инструменты в библиотеке предварительной установки измерений (и список соответствия в назначении результатов) отображаются иначе, чем в меню измерения и окне результатов.
	В библиотеке предварительной установки (и списке соответствия в назначении результатов) за инструментом следует слово, указывающее режим или местоположение. Например, «Диам.LA(2D)» означает, что измерение выполняется в режиме 2D; «Диам.LA(LA Vol A-L)» означает, что инструмент входит в исследование под названием «LA Vol(A-L)».

6.3.1 Кардиологические измерения в режиме 2D

Типы	Инструменты	Описания	Методы или формулы
	Диам.LA	Диаметр левого предсердия	
	LA большое	Большой диаметр левого предсердия	
	LA малое	Малый диаметр левого предсердия	
	RA большое	Большой диаметр правого предсердия	«Отрезок» в общих измерениях в режиме 2D
	RA малое	Малый диаметр правого предсердия	
	LV большой	Большой диаметр левого желудочка	
Измороцио	LV малый	Малый диаметр левого желудочка	
измерение	RV большой	Большой диаметр правого желудочка	«Отрезок» в общих измерениях в режиме 2D
	RV малый	Малый диаметр правого желудочка	
	Площ. LA	Площадь левого предсердия	
	Площ.RA	Площадь правого предсердия	«Площ» в общих измерениях в режиме 2D
	Пл(д) LV	Конечно-диастолическая площадь левого желудочка	
	Пл(с) LV	Конечно-систолическая площадь левого желудочка	
	Пл(д) RV	Конечно-диастолическая площадь правого желудочка	

Типы	Инструменты	Описания	Методы или формулы
	Пл(с) RV	Конечно-систолическая площадь правого желудочка	
	LVIDd	Конечно-диастолический внутренний диаметр левого желудочка	
	LVIDs	Конечно-систолический внутренний диаметр левого желудочка	
	RVDd	Конечно-диастолический диаметр правого желудочка	
	RVDs	Конечно-систолический диаметр правого желудочка	
	LVPWd	Конечно-диастолическая толщина задней стенки левого желудочка	
	LVPWs	Конечно-систолическая толщина задней стенки левого желудочка	
	RVAWd	Конечно-диастолическая толщина передней стенки правого желудочка	
	RVAWs	Конечно-систолическая толщина передней стенки правого желудочка	«Отрезок» в общих измерениях в режиме 2D
	IVSd	Конечно-диастолическая толщина межжелудочковой перегородки	
	IVSs	Конечно-систолическая толщина межжелудочковой перегородки	
	Диам.Ао	Диаметр аорты	
	Диам. дуги Ао	Диаметр дуги аорты	
	Диам. ВАо	Диаметр восходящей аорты	
	Диам. НАо	Диаметр нисходящей аорты	
	Перешеек Ао	Диаметр перешейка аорты	
Измерение	С-т стык Ао	Диаметр аорты в стыке ST	
	Диам. синуса Ао	Диаметр синуса аорты	
	Диам арт прот	Диаметр артериального протока	
	Пред-проточн	Послепроточный диаметр	
	Пост-проточн	Послепроточный диаметр	
	ACS	Куспидальное разделение аортального клапана	«Отрезок» в общих измерениях в режиме 2D

Типы	Инструменты	Описания	Методы или формулы
	Диам.LVOT	Диаметр выносящего тракта левого желудочка	
	Диам.AV	Диаметр аортального клапана	
	AVA	Площадь аортального клапана	«Площ» в общих измерениях в режиме 2D
	ДмтрРV	Диаметр клапана легочной артерии	
	Диам LPA	Диаметр левой легочной артерии	
	Диам RPA	Диаметр правой легочной артерии	«Отрезок» в общих
	Диа. МРА	Диаметр главной легочной артерии	измерениях в режиме 2D
	Диам.RVOT	Диаметр выносящего тракта правого желудочка	
	Диам.MV	Диаметр митрального клапана	
	MVA	Площадь митрального клапана	«Площ» в общих измерениях в режиме 2D
	MCS	Куспидальное разделение митрального клапана	
	EPSS	Расстояние между точкой Е и межжелудочковой перегородкой, когда митральный клапан полностью открыт	«Отрезок» в общих измерениях в режиме 2D
	Диаметр TV	Диаметр трехстворчатого клапана	
	TVA	Площадь трехстворчатого клапана	«Площ» в общих измерениях в режиме 2D
	Диам IVC (Insp)	Диаметр нижней полой вены при вдохе	
	Диам IVC(Expir)	Диаметр нижней полой вены при выдохе	
Измерение	Диам SVC(Insp)	Диаметр верхней полой вены при вдохе	«Отрезок» в общих измерениях в режиме 2D
	Диам SVC(Expir)	Диаметр верхней полой вены при выдохе	
	LCA	Левая коронарная артерия	
	RCA	Правая коронарная артерия	
	Диаметр VSD	Диаметр дефекта межжелудочковой перегородки	«Отрезок» в общих измерениях в режиме 2D

Типы	Инструменты	Описания	Методы или формулы
	Диам ASD	Диаметр дефекта межпредсердной перегородки	
	Диам PDA	Диаметр открытого артериального протока	
	Диам PFO	Диаметр открытого овального отверстия	
	PEd	Перикардиальный выпот при диастоле	
	PEs	Перикардиальный выпот при систоле	
	ЧСС	Частота сердечных сокращений	«HR» в общих измерениях в М-режиме
	Диастола	Измерение левого желудочка в конце диастолы	«Лин.сгиб» в режиме 2D
	Систола	Измерение левого желудочка в конце систолы	
Расчет	LA/Ao	Диаметр левого предсердия/диаметр аорты	ДЛП (см)/ДАо (см)
	Ao/LA	Диаметр аорты/диаметр левого предсердия	ДАо (см)/ДЛА (см)
Исследование	См. ниже		

6.3.2 Кардиологические измерения в М-режиме

Типы	Инструменты	Описания	Методы или формулы
	Диам.LA	Диаметр левого предсердия	
Измерение	LVIDd	Конечно-диастолический внутренний диаметр левого желудочка	«Отрезок» в общих измерениях в М-режиме
	LVIDs	Конечно-систолический внутренний диаметр левого желудочка	
	RVDd	Конечно-диастолический диаметр правого желудочка	
	RVDs	Конечно-систолический диаметр правого желудочка	
	LVPWd	Конечно-диастолическая толщина задней стенки левого желудочка	
	LVPWs	Конечно-систолическая толщина задней стенки левого желудочка	

Типы	Инструменты	Описания	Методы или формулы
	RVAWd	Конечно-диастолическая толщина передней стенки правого желудочка	
	RVAWs	Конечно-систолическая толщина передней стенки правого желудочка	
	IVSd	Конечно-диастолическая толщина межжелудочковой перегородки	
	IVSs	Конечно-систолическая толщина межжелудочковой перегородки	
	Диам.Ао	Диаметр аорты	
	Диам. дуги Ао	Диаметр дуги аорты	
	Диам. ВАо	Диаметр восходящей аорты	
	Диам. НАо	Диаметр нисходящей аорты	
	Перешеек Ао	Диаметр перешейка аорты	
	С-т стык Ао	Диаметр аорты в стыке ST	
	Диам. синуса Ао	Диаметр синуса аорты	
	Диам.LVOT	Диаметр выносящего тракта левого желудочка	
	ACS	Куспидальное разделение аортального клапана	
	Диам LPA	Диаметр левой легочной артерии	
	Диам RPA	Диаметр правой легочной артерии	
	Диа. МРА	Диаметр главной легочной артерии	
	Диам.RVOT	Диаметр выносящего тракта правого желудочка	
	MV E Amp	Амплитуда пика Е митрального клапана	
	MV A Amp	Амплитуда пика А митрального клапана	
	Нак.Е-F MV	Наклон Е-F митрального клапана	«Накл.» в общих
	Нак.D-Е МК	Наклон D-E митрального клапана	измерениях в М-режиме
	MV DE	Амплитуда пика DE митрального клапана	«Отрезок» в общих измерениях в М-режиме

Типы	Инструменты	Описания	Методы или формулы
	MCS	Куспидальное разделение митрального клапана	
	EPSS	Расстояние между точкой Е и межжелудочковой перегородкой	
	PEd	Перикардиальный выпот при диастоле	
	PEs	Перикардиальный выпот при систоле	
	LVPEP	Период предвыброса левого желудочка	
	LVET	Время выброса левого желудочка	«Время» в общих
	RVPEP	Период предвыброса правого желудочка	измерениях в М-режиме
	RVET	Время выброса правого желудочка	
	ЧСС	Частота сердечных сокращений	«HR» в общих измерениях в М-режиме
	Диастола	Измерение левого желудочка в конце диастолы	Метод «Параллел»
	Систола	Измерение левого желудочка в конце систолы	в М-режиме
Расчет	LA/Ao	Диаметр левого предсердия/диаметр аорты	ДЛП (см)/ДАо (см)
	Ao/LA	Диаметр аорты/диаметр левого предсердия	ДАо (см)/ДЛА (см)
Исследование	См. ниже		

6.3.3 Кардиологические измерения в допплеровском режиме

Типы	Инструменты	Описания	Методы или формулы
Измерение	Vмак MV	Максимальная скорость в митральном клапане	«Ск. D» в общих измерениях в допплеровском режиме
	MV E Vel	Скорость пика Е в митральном клапане	
	MV A Vel	Скорость пика А в митральном клапане	
	MV E VTI	Интеграл скорости пика Е по времени в митральном клапане	«Д конт.» в общих измерениях в допплеровском режиме

Типы	Инструменты	Описания	Методы или формулы
	MV A VTI	Интеграл скорости пика A по времени в митральном клапане	
	MV VTI	Интеграл скорости по времени в митральном клапане	
	MV AccT	Время ускорения в митральном клапане	«Ускорение» в общих
	MV DecT	Время замедления в митральном клапане	допплеровском режиме
	IVRT	Время расслабления при постоянной скорости	
	IVCT	Время сжатия при постоянной скорости	«Время» в общих
	MV E Dur	Длительность пика Е в митральном клапане	допплеровском режиме
	MV A Dur	Длительность пика А в митральном клапане	
	Vмак LVOT	Скорость в выносящем тракте левого желудочка	«Ск. D» в общих измерениях в допплеровском режиме
	LVOT VTI	Интеграл скорости по времени в выносящем тракте левого желудочка	«Д конт.» в общих измерениях в допплеровском режиме
	LVOT AccT	Время ускорения в выносящем тракте левого желудочка	«Время» в общих измерениях в допплеровском режиме
	Vмакс Аао	Максимальная скорость в восходящей аорте	
	Vмак Dao	Максимальная скорость в нисходящей аорте	«Ск. D» в общих измерениях в допплеровском режиме
Измерение	Vмак AV	Максимальная скорость в аортальном клапане	
	AV VTI	Интеграл скорости по времени в аортальном клапане	«Д конт.» в общих измерениях в допплеровском режиме
	LVPEP	Период предвыброса правого желудочка	
	LVET	Время выброса левого желудочка	«Время» в общих измерениях в допплеровском режиме
	В.уск. АV	Время ускорения в аортальном клапане	
	AV DecT	Время замедления в аортальном клапане	

Типы	Инструменты	Описания	Методы или формулы
	RVET	Время выброса правого желудочка	«Время» в общих
	RVPEP	Период предвыброса правого желудочка	допплеровском режиме
	Vмак TV	Максимальная скорость в трехстворчатом клапане	
	TV E Vel	Скорость кровотока трехстворчатого клапана в пике Е	«Ск. D» в общих измерениях в допплеровском режиме
	TV A Vel	Скорость кровотока трехстворчатого клапана в пике А	
	τν ντι	Интеграл скорости по времени в трехстворчатом клапане	«Д конт.» в общих измерениях в допплеровском режиме
	TV AccT	Время ускорения в трехстворчатом клапане	«Ускорение» в общих
	TV DecT	Время замедления в трехстворчатом клапане	допплеровском режиме
	TV A Dur	Длительность пика А в трехстворчатом клапане	«Время» в общих измерениях в допплеровском режиме
	Vмакс RVOT	Максимальная скорость в выносящем тракте правого желудочка	«Ск. D» в общих измерениях в допплеровском режиме
	RVOT VTI	Интеграл скорости по времени в выносящем тракте правого желудочка	«Д конт.» в общих измерениях в допплеровском режиме
	Vмак PV	Максимальная скорость в легочном клапане	«Ск. D» в общих измерениях в допплеровском режиме
	PV VTI	Интеграл скорости по времени в легочном клапане	«Д конт.» в общих измерениях в допплеровском режиме
	PV AccT	Время ускорения в легочном клапане	«Ускорение» в общих измерениях в допплеровском режиме
	Vмакс МРА	Максимальная скорость в главной легочной артерии	
	Vмакс RPA	Максимальная скорость в правой легочной артерии	«Ск. D» в общих измерениях в допплеровском режиме
	Vмак LPA	Максимальная скорость в левой легочной артерии	

Типы	Инструменты	Описания	Методы или формулы
	PVein S Vel	Скорость кровотока легочной вены в пике S	
	PVein D Vel	Скорость кровотока легочной вены в пике D	«Ск. D» в оощих измерениях в допплеровском режиме
	PVein A Vel	Скорость кровотока легочной вены в пике А	
	PVein A Dur	Длительность пика А в легочной вене	«Время» в общих измерениях в допплеровском режиме
	PVein S VTI	Интеграл скорости кровотока легочной вены по времени в пике S	«Д конт.» в общих
	PVein D VTI	Интеграл скорости кровотока легочной вены по времени в пике D	допплеровском режиме
	PVein DecT	Время замедления в легочной вене	«Время» в общих измерениях в допплеровском режиме
	IVC Vel (Insp)	Максимальная скорость в нижней полой вене во время вдоха	
	IVC Vel (Expir)	Максимальная скорость в нижней полой вене во время выдоха	
	SVC Vel (Insp)	Максимальная скорость в верхней полой вене во время вдоха	«Ск. D» в общих измерениях в допплеровском режиме
	SVC Vel (Expir)	Максимальная скорость в верхней полой вене во время выдоха	
	Vмак MR	Максимальная скорость митральной регургитации	
	MR VTI	Интеграл скорости митральной регургитации по времени	«Д конт.» в общих измерениях в допплеровском режиме
	Vмак MS	Максимальная скорость при стенозе митрального клапана	«Ск. D» в общих измерениях в допплеровском режиме
	dP/dt	Скорость изменения давления	Измерение dP/dt
	Vмак AR	Максимальная скорость аортальной регургитации	«Ск. D» в общих измерениях в допплеровском режиме
	AR VTI	Интеграл скорости аортальной регургитации по времени	«Д конт.» в общих измерениях в допплеровском режиме

Типы	Инструменты	Описания	Методы или формулы
	AR DecT	Время замедления аортальной регургитации	«Ускорение» в общих измерениях в допплеровском режиме
	AR PHT	Полупериод давления аортальной регургитации	Измерение в допплеровском режиме
	AR Ved	Конечно-диастолическая скорость аортальной регургитации	«Ск. D» в общих измерениях в допплеровском режиме
	Vмак ТР	Максимальная скорость трикуспидальной регургитации	
	ИСВ ТР	Интеграл скорости трикуспидальной регургитации по времени	«Д конт.» в общих измерениях в допплеровском режиме
	Vмак PR	Максимальная скорость трикуспидальной регургитации	«Ск. D» в общих измерениях в допплеровском режиме
	PR VTI	Интеграл скорости по времени при регургитации в трехстворчатом клапане	«Д конт.» в общих измерениях в допплеровском режиме
	PR PHT	Полупериод давления при регургитации в легочном клапане	Измерение в допплеровском режиме
	PR Ved	Конечно-диастолическая скорость при регургитации в легочном клапане	
	Vмакс VSD	Максимальная скорость при дефекте межжелудочковой перегородки	
	Vмак ASD	Максимальная скорость при дефекте межпредсердной перегородки	«Ск. D» в общих
	PDA Vel(d)	Конечно-диастолическая скорость в открытом артериальном протоке	измерениях в допплеровском режиме
	PDA Vel(s)	Конечно-систолическая скорость в открытом артериальном протоке	
	Пред-прот коарк	Коарктация перед протоком	
	Пост-прот коарк	Коарктация после протока	
	чсс	Частота сердечных сокращений	

Типы	Инструменты	Описания	Методы или формулы
	RAP	Давление в правом предсердии	Выберите во всплывающем диалоговом окне или введите значение вручную. См. измерение RAP в разделе «RVSP»
Расчет	MV E/A	E-Vel/A-Vel митрального клапана	MV E Vel (см/с)/MV A Vel (см/с)
	MVA(PHT)	Площадь отверстия митрального клапана (PHT)	MVA(PHT) (см ²) = 220/MV PHT (мс)
	TV E/A	E-Vel/A-Vel трехстворчатого клапана	
	TVA(PHT)	Площадь отверстия трехстворчатого клапана (PHT)	
Исследование	См. ниже		

6.3.4 Кардиологические измерения в режиме TDI

Следующие измерения выполняются в режиме TDI.

Типы	Инструменты	Описания	Методы или формулы	
	Рс(средин)	Раннее движение медиальной части митрального клапана в диастолу	«Ск. D» в общих измерениях в	
	Пс(средин)	Позднее движение медиальной части митрального клапана в диастолу		
	Сс(средин)	Движение медиальной части митрального клапана в систолу	допплеровском режиме	
Измерение	ARa(средин)	Темп ускорения медиальной части митрального клапана	-	
	DRa(средин)	Темп замедления медиальной части митрального клапана		
	Рс(боков)	Раннее движение латеральной части митрального клапана в диастолу		
	Пс(боков)	Позднее движение латеральной части митрального клапана в диастолу	«Ск. D» в общих	
	Сс(боков)	Движение латеральной части митрального клапана в систолу	измерениях в допплеровском	
	ARa(боков)	Темп ускорения латеральной части митрального клапана		
	DRa(боков)	Темп замедления латеральной части митрального клапана		
Расчет	1	1		
Исследование	См. ниже			

6.4 Выполнение кардиологических измерений

Советы:	1.	Инструменты и методы измерения см. выше в таблице раздела «6.3 Инструменты для кардиологических измерений».
	2.	Определения измерения, расчета и исследования см. в разделе «1.3 Измерение, расчет и исследование».
	3.	Очередность измерений устанавливается предварительно (подробнее см. в разделе «2.4.2 Предварительная установка специальных измерений»).
	4.	Инструмент измерения можно активировать, выбрав пункт в меню измерения или на сенсорном экране, далее это описывается как «Выберите/нажмите(определённый пункт) в меню измерения».
	5.	Измерения с помощью некоторых инструментов, описанных в этой главе, предназначены для нескольких режимов формирования изображения. При измерении выбирайте подходящие режимы формирования изображения.

6.4.1 Работа с инструментами измерений

- 1. В меню измерения выберите пункт/инструмент.
- 2. Выполните измерение, используя методы из приведенной выше таблицы.

6.4.2 Работа с инструментами вычислений

- 1. В меню измерения выберите пункт/инструмент.
- 2. Система рассчитывает и отображает результаты по завершении соответствующих измерений.

6.4.3 Работа с инструментами исследования

6.4.3.1 Функция левого желудочка

Эта группа исследований предназначена для оценки диастолических и систолических возможностей левого желудочка (LV) с помощью ряда показателей, измеряемых на изображении в режиме В или М. За исключением расчета объема левого желудочка, а также конечной диастолы и конечной систолы, с их помощью можно рассчитывать следующие показатели (не все показатели рассчитываются в каждом исследовании, для справки см. таблицу результатов исследования каждого исследования).

Результат	Описания	Формулы
SV	Ударный объем	SV(мл) = EDV(мл)-ESV(мл)
CO	Сердечный выброс	CO(л/мин) = SV(мл)×HR(уд./мин)/1000
EF	Фракция выброса	EF(безразмерная величина) = SV(мл)/EDV(мл)
SI	Ударный индекс	SI(безразмерная величина) = SV(мл)/Площадь поверхности тела (м ²)
CI	Сердечный выброс	СІ(безразмерная величина) = СО(л/мин)/Площадь поверхности тела (м ²)

Результат	Описания	Формулы
FS	Фракционное укорочение	FS (безразмерная величина) = (LVIDd (см) – LVIDs (см))/LVIDd (см)
MVCF	Средняя скорость укорочения периферических волокон	MVCF = (LVIDd(см) – LVIDs(см))/(LVIDd (см) × LVET (с)/1000)

Моноп.эллип

Инструменты исследования

Инструменты	Описания	Операции
LVLd апик.	Конечно-диастолическая длина левого желудочка вдоль длинной оси в апикальной проекции	«Отрезок» в общих измерениях в режиме 2D
LVAd апик.	Конечно-диастолическая площадь левого желудочка вдоль длинной оси в апикальной проекции	«Площ» в общих измерениях в режиме 2D
LVLs апик.	Конечно-систолическая длина левого желудочка вдоль длинной оси в апикальной проекции	«Отрезок» в общих измерениях в режиме 2D
LVAs апик.	Конечно-систолическая площадь левого желудочка вдоль длинной оси в апикальной проекции	«Площ» в общих измерениях в режиме 2D
ЧСС	Частота сердечных сокращений	Определяется с помощью ЭКГ или вводится напрямую

Результаты исследования

Инструменты	Описания	Формулы
EDV(SP Ellipse)	Конечно- диастолический объем левого желудочка	EDV(SP Ellipse)(ml) = $\frac{8}{3\pi} \times \frac{\text{LVAd apical}(cm^2)^2}{\text{LVLd apical}(cm)}$
ESV(SP Ellipse)	Конечно- систолический объем левого желудочка	ESV(SP Ellipse)(ml) = $\frac{8}{3\pi} \times \frac{\text{LVAs apical}(cm^2)^2}{\text{LVLs apical}(cm)}$
SV(SP Ellipse)	Ударный объем	
CO(SP Ellipse)	Сердечный выброс	
EF(SP Ellipse)	Фракция выброса	См. таблицу в разделе «6.4.3.1 Функция левого
SI(SP Ellipse)	Ударный индекс	желудочка»
CI(SP Ellipse)	Индекс сердечного выброса	

- Порядок действий
- 1. В меню измерения выберите пункт [Моноп.эллип].
- 2. Измерьте следующие параметры в конце диастолы в апикальной проекции вдоль длинной оси:

LVLd апик.

LVAd апик.

После этого рассчитывается значение EDV.

3. Измерьте следующие параметры в конце систолы в апикальной проекции вдоль длинной оси:

LVLs апик.

LVAs апик.

После этого рассчитывается значение ESV.

Система рассчитывает SV и EF.

Если рост и вес уже введены, рассчитывается SI.

4. Измерьте HR (частоту сердечных сокращений) в М-режиме/допплеровском режиме, или выберите источник HR с помощью рукоятки сенсорного экрана: ЕСG или Ввод.

СО и СІ рассчитаются автоматически.

2пл. эллипс

Инструменты исследования

Инструменты	Описания	Операции	
LVIDd	Конечно-диастолический внутренний диаметр левого желудочка	«Отрезок» в общих измерениях в режиме 2D	
LVIDs	Конечно-систолический внутренний диаметр левого желудочка		
LVAd sax MV	Конечно-диастолическая площадь левого желудочка на уровне митрального клапана в проекции вдоль короткой оси		
LVAs sax MV	Конечно-систолическая площадь левого желудочка на уровне митрального клапана в проекции вдоль короткой оси	«Площ» в общих измерениях в режиме 2D	
LVAd апик.	Конечно-диастолическая площадь левого желудочка вдоль длинной оси в апикальной проекции		
LVAs апик.	Конечно-систолическая площадь левого желудочка вдоль длинной оси в апикальной проекции		
ЧСС	Частота сердечных сокращений	Определяется с помощью ЭКГ или вводится напрямую	

Результаты исследования

Инструменты	Описания	Формулы
EDV(BP Ellipse)	Конечно-диастолический объем левого желудочка	*1
ESV(BP Ellipse)	Конечно-систолический объем левого желудочка	*2

Инструменты	Описания	Формулы
SV(BP Ellipse)	Ударный объем	
CO(BP Ellipse)	Сердечный выброс	
EF(BP Ellipse)	Фракция выброса	См. таблицу в разделе «6.4.3.1 Функция
SI(BP Ellipse)	Ударный индекс	левого желудочка»
CI(BP Ellipse)	Индекс сердечного выброса	

*1 означает:

EDV(BP Ellipse)(ml) =
$$\frac{8}{3\pi} \times LVAd \operatorname{apical}(cm^2) \times LVAd \operatorname{sax} MV(cm^2)/LVIDd(cm)$$

*2 означает:

ESV(BP Ellipse)(ml) =
$$\frac{8}{3\pi}$$
 × LVAs apical(cm²) × LVAs sax MV(cm²)/LVIDs(cm)

- Порядок действий
- 1. В меню выберите пункт [2пл. эллипс].
- 2. В проекции вдоль короткой оси левого желудочка измерьте следующие параметры:
 - В конце диастолы: LVIDd
 - В конце систолы: LVIDs
- В проекции вдоль короткой оси на уровне митрального клапана измерьте следующие параметры:
 - В конце диастолы: LVAd sax MV
 - В конце систолы: LVAs sax MV
- 4. В апикальной проекции вдоль длинной оси измерьте следующие параметры:
 - LVAd апик., и рассчитается EDV
 - LVAs апик., и рассчитается ESV

После измерения «LVAs апик.» система рассчитывает SV и EF.

Если рост и вес уже введены, рассчитывается SI.

 Измерьте HR (частоту сердечных сокращений) в М-режиме/допплеровском режиме, или выберите источник HR с помощью рукоятки сенсорного экрана: ЕСG или Ввод.
 СО и CI рассчитаются автоматически.

Bullet

Инструменты исследования

Инструменты	Описания	Операции
LVLd апик.	Конечно-диастолическая длина левого желудочка вдоль длинной оси в апикальной проекции	«Отрезок» в общих
LVLs апик.	Конечно-систолическая длина левого желудочка вдоль длинной оси в апикальной проекции	измерениях в режиме 2D

Инструменты	Описания	Операции	
LVAd sax MV	Конечно-диастолическая площадь левого желудочка на уровне митрального клапана в проекции вдоль короткой оси	«Площ» в общих измерениях в режиме 2D	
LVAs sax MV	Конечно-систолическая площадь левого желудочка на уровне митрального клапана в проекции вдоль короткой оси		
ЧСС	Частота сердечных сокращений	Определяется с помощью ЭКГ или вводится напрямую	

• Результаты исследования

Инструменты	Описания	Формулы
EDV(Bullet)	Конечно- диастолический объем левого желудочка	EDV(мл)= 5/6×LVLd апик.(см)×LVAd sax MV(см ²)
ESV(Bullet)	Конечно- систолический объем левого желудочка	ESV(мл)= 5/6×LVLs апик.(см)×LVAs sax MV(см²)
SV(Bullet)	Ударный объем	
CO(Bullet)	Сердечный выброс	
EF(Bullet)	Фракция выброса	См. таблицу в разделе «6.4.3.1 Функция левого
SI(Bullet)	Ударный индекс	желудочка»
CI(Bullet)	Индекс сердечного выброса	

Порядок действий

- 1. В меню измерения выберите пункт [Bullet].
 - В апикальной проекции вдоль длинной оси измерьте следующие параметры:
 - В конце диастолы: LVLd апик.
 - В конце систолы: LVLs апик.
- 2. В проекции вдоль короткой оси на уровне митрального клапана измерьте следующие параметры:
 - В конце диастолы: LVAd sax MV, и рассчитается EDV
 - В конце систолы: LVAs sax MV, и рассчитается ESV
 - Система рассчитывает SV и EF. Если рост и вес уже введены, рассчитывается SI.
- Измерьте HR (частоту сердечных сокращений) в М-режиме/допплеровском режиме, или выберите источник HR с помощью рукоятки сенсорного экрана: ЕСG или Ввод. СО и CI рассчитаются автоматически.

Mod.Simpson

■ Инструменты исследования

Инструменты	Описания	Операции
LVLd апик.	Конечно-диастолическая длина левого желудочка вдоль длинной оси в апикальной проекции	«Отрезок» в общих
LVLs апик.	Конечно-систолическая длина левого желудочка вдоль длинной оси в апикальной проекции	измерениях в режиме 2D
LVAd sax MV	Конечно-диастолическая площадь левого желудочка на уровне митрального клапана в проекции вдоль короткой оси	
LVAs sax MV	Конечно-систолическая площадь левого желудочка на уровне митрального клапана в проекции вдоль короткой оси	«Площ» в общих
LVAd sax PM	Конечно-диастолическая площадь левого желудочка на уровне папиллярной мышцы в проекции вдоль короткой оси	измерениях в режиме 2D
LVAs sax PM	Конечно-систолическая площадь левого желудочка на уровне папиллярной мышцы в проекции вдоль короткой оси	
ЧСС	Частота сердечных сокращений	Определяется с помощью ЭКГ или вводится напрямую

Результаты исследования

Инструменты	Описания	Формулы
EDV(Simpson)	Конечно-диастолический объем левого желудочка	*1
ESV(Simpson)	Конечно-систолический объем левого желудочка	*2
SV(Simpson)	Ударный объем	
CO(Simpson)	Сердечный выброс	
EF(Simpson)	Фракция выброса	См. таблицу в разделе «6.4.3.1 Функция левого желудочка»
SI(Simpson)	Ударный индекс	
CI(Simpson)	Индекс сердечного выброса	

*1 означает:

$$EDV[mL] = \frac{\text{LVLd apical}[mm]}{9} \times \left(\frac{4 \times \text{LVAd sax MV}[mm^2] + 2 \times \text{LVAd}}{\text{sax PM}[mm^2] + \sqrt{\text{LVAd sax MV}[mm^2] \times \text{LVAd sax PM}[mm^2]}}\right) / 1000$$

*2 означает:

$$ESV[mL] = \frac{LVLs apical[mm]}{9} \times \begin{pmatrix} 4 \times LVAs sax MV[mm^{2}] + 2 \times LVAs \\ sax PM[mm^{2}] + \sqrt{LVAs sax MV[mm^{2}] \times LVAs sax PM[mm^{2}]} \end{pmatrix} / 1000$$

- Порядок действий
- 1. В меню измерения выберите пункт [Mod.Simpson].
- 2. В апикальной проекции вдоль длинной оси измерьте следующие параметры:
 - В конце диастолы: LVLd апик.
 - В конце систолы: LVLs апик.
- 3. В проекции вдоль короткой оси на уровне митрального клапана измерьте следующие параметры:
 - В конце диастолы: LVAd sax MV
 - В конце систолы: LVAs sax MV
- 4. В проекции вдоль короткой оси на уровне папиллярной мышцы измерьте следующие параметры:
 - В конце диастолы: LVAd sax PM, и рассчитается EDV
 - В конце систолы: LVAs sax PM, и рассчитается ESV

Система рассчитывает SV и EF.

Если рост и вес уже введены, рассчитывается SI.

- Измерьте HR (частоту сердечных сокращений) в М-режиме/допплеровском режиме, или выберите источник HR с помощью рукоятки сенсорного экрана: ЕСG или Ввод.
 - СО и СІ рассчитаются автоматически.

Simpson SP

Этот метод включает в себя два исследования: Simp SP(A4C) и Simp SP(A2C).

Инструменты исследования

Инструменты	Описания	Операции
EDV(A2C/A4C)	Конечно-диастолический объем левого желудочка (2-камерная/4- камерная апикальная проекция)	Измерение методом Simpson
ESV(A2C/A4C)	Конечно-систолический объем левого желудочка (2-камерная/4-камерная апикальная проекция)	(Отмеч/Сплайн/Авто)
ЧСС	Частота сердечных сокращений	Определяется с помощью ЭКГ или вводится напрямую

Результаты исследования

Инструменты	Описания	Формулы
		EDV(ml) = $\pi \times \frac{\text{LVLd apical}(cm)}{20} \times \sum_{i=1}^{20} r_i^2(cm)$
EDV(Simp SP)	Конечно- диастолический объем левого желудочка	LVLd апик.: конечно-диастолическая длина левого желудочка вдоль длинной оси в апикальной проекции, т. е., длина вдоль длинной оси, полученная при измерении
		<i>^г_i</i> : радиусы, полученные при измерении в диастоле

Инструменты	Описания	Формулы
ESV(Simp SP)	Конечно- систолический объем левого желудочка	$ESV(ml) = \pi \times \frac{LVLs apical(cm)}{20} \times \sum_{i=1}^{20} r_i^2(cm)$ LVLs апик.: конечно-систолическая длина левого желудочка вдоль длинной оси в апикальной проекции, т. е., длина вдоль длинной оси, полученная при измерении
		<i>^г_i</i> : радиусы, полученные при измерении в систоле
SV	Ударный объем	
CO	Сердечный выброс	
EF	Фракция выброса	См. таблицу в разделе «6.4.3.1 Функция левого
SI	Ударный индекс	жытудочка//
CI	Индекс сердечного выброса	

- Порядок действий
- 1. В меню измерения выберите пункт [Simp SP].
- 2. Измерьте эндокард.

Измерьте эндокард левого желудочка в конце диастолы и задайте длинную ось — получится EDV.

Измерьте эндокард левого желудочка в конце систолы и задайте длинную ось — получится ESV.

Система рассчитывает SV и EF.

Если рост и вес уже введены, рассчитывается SI.

3. Измерьте HR (частоту сердечных сокращений) в М-режиме/допплеровском режиме, или выберите источник HR с помощью рукоятки сенсорного экрана: ЕСG или Ввод.

СО и СІ рассчитаются автоматически.

Методы измерения

Эндокард можно измерить методами «Контур», «Сплайн» или «Авто»; вращайте ручку под пунктом [EDV] или [ESV] на сенсорном экране, чтобы выбрать метод.

• Контур

Обведите эндокард вдоль края требуемой области, действуя так, как указано в описании метода «Контур» в измерениях площади в режиме 2D, и затем установите длинную ось.

• Сплайн

Задайте контрольные точки (до 12) вдоль края эндокарда, действуя так, как указано в описании метода «Сплайн» в измерениях площади в режиме 2D, и затем установите длинную ось.

- Авто
- (1) С помощью трекбола и клавиши <Set> (Установить) задайте точки А и В, где
 - А: стык межжелудочковой перегородки левого желудочка и митрального клапана.
 - В: стык стенки левого желудочка и митрального клапана.

- (2) После задания точек А и В курсор автоматически помещается в точку D, которую система определяет как апикальную часть. При этом одновременно отображаются длинная ось (отрезок CD) и линия контура эндокарда. Где:
 - С: посередине между точками А и В.
 - > D: апикальная часть следующего желудочка.

Возможны следующие операции:

- Скорректируйте длинную ось
 - a) Вращая трекбол, установите курсор на длинную ось (она окрасится в желтый цвет), и нажмите клавишу <Set> (Установить).
- Скорректируйте контур
 - a) Вращая трекбол, установите курсор на линию контура (она окрасится в желтый цвет), и нажмите клавишу <Set> (Установить).
 - b) После того, как курсор примет вид перемещая курсор вдоль края эндокарда (точки А, В, D останутся неизменными).

(3) Чтобы подтвердить коррекцию, уберите курсор за пределы линии и нажмите клавишу <Set> (Установить).

Simpson BP

Инструменты исследования

Инструменты	Описания	Операции
EDV(A2C)	Конечно-диастолический объем левого желудочка (2-камерная апикальная проекция)	
ESV(A2C)	Конечно-систолический объем левого желудочка (2-камерная апикальная проекция)	Измерение методом Simpson (Отмеч/Сплайн/Авто)
EDV(A4C)	Конечно-диастолический объем левого желудочка (4-камерная апикальная проекция)	Как измерять эндокард, см. в разделе «Simpson SP»
ESV(A4C)	Конечно-систолический объем левого желудочка (4-камерная апикальная проекция)	
ЧСС	Частота сердечных сокращений	Определяется с помощью ЭКГ или вводится напрямую

Результаты исследования

Инструменты	Описания	Формулы
EDV(Simpson BP)	Конечно-диастолический объем левого желудочка	*1
ESV(Simpson BP)	Конечно-систолический объем левого желудочка	*2
SV(Simpson BP)	Ударный объем	
CO(Simpson BP)	Сердечный выброс	
EF(Simpson BP)	Фракция выброса	См. таблицу в разделе «6.4.3.1 Функция левого желудочка»
SI(Simpson BP)	Ударный индекс	, , , , , , , , , , , , , , , , , , ,
CI(Simpson BP)	Индекс сердечного выброса	

*1 означает:

EDV(*ml*)=
$$\pi \times \frac{MAX\{LVLd_{2i}(cm), LVLd_{4i}(cm)\}}{20} \times \sum_{i=1}^{20} (r_{2i}(cm) \times r_{4i}(cm))$$

*2 означает:

$$ESV(ml) = \pi \times \frac{MAX\{LVLs_{2i}(cm), LVLs_{4i}(cm)\}}{20} \times \sum_{i=1}^{20} (r_{2i}(cm) \times r_{4i}(cm))$$

Рассчитайте объем левого желудочка (LV) на изображении апикальной 2-камерной проекции:

EDV
$$2(ml) = \pi \times \frac{LVLd}{2i} (cm) / 20 \times \sum_{i=1}^{20} r_{2i}^2 (cm)$$

ESV $2(ml) = \pi \times \frac{LVLs}{2i} (cm) / 20 \times \sum_{i=1}^{20} r_{2i}^2 (cm)$

Рассчитайте объем левого желудочка (LV) на изображении апикальной 4-камерной проекции:

EDV 4(*ml*) =
$$\pi \times \frac{LVLd}{4i} (cm) / 20 \times \sum_{i=1}^{20} r_{4i}^{2} (cm)$$

ESV 4(*ml*) =
$$\pi \times \frac{LVLs_{4i}(cm)}{20} \times \sum_{i=1}^{20} r_{4i}^{2}(cm)$$

Где:

*LVLd*_{2i} — конечно-диастолическая длина левого желудочка вдоль длинной оси в апикальной двухкамерной проекции, измеренная с помощью инструмента «EDV(A2C)» *LVLd*_{4i} — конечно-диастолическая длина левого желудочка вдоль длинной оси в апикальной четырехкамерной проекции, измеренная с помощью инструмента «EDV(A4C)»

*LVLs*_{2*i*} — конечно-систолическая длина левого желудочка вдоль длинной оси в апикальной двухкамерной проекции, измеренная с помощью инструмента «ESV(A2C)» *LVLs*_{4*i*} — конечно-систолическая длина левого желудочка вдоль длинной оси в апикальной четырехкамерной проекции, измеренная с помощью инструмента «ESV(A4C)»

*r*_{2*i*} — радиусы, полученные с помощью инструмента «EDV(A2C)» или «ESV(A2C)» в апикальной двухкамерной проекции

*r*_{4*i}</sub> — радиусы, полученные с помощью инструмента «EDV(A4C)» или «ESV(A4C)» в апикальной четырехкамерной проекции</sub>*

▲ ВНИМАНИЕ: При измерении функции левого желудочка с помощью исследования «Simpson BP» апикальная четырехкамерная проекция и апикальная двухкамерная проекция должны быть перпендикулярны. В противном случае результат измерения будет неточен.

- Порядок действий
- 1. В меню измерения выберите пункт [Simpson BP].
- 2. В апикальной двухкамерной проекции измерьте следующие параметры:

эндокард левого желудочка в конце диастолы и задайте длинную ось — получится EDV(A2C);

эндокард левого желудочка в конце систолы и задайте длинную ось — получится ESV(A2C);

3. В апикальной четырехкамерной проекции измерьте следующие параметры:

эндокард левого желудочка в конце диастолы и задайте длинную ось — получится EDV(A4C);

эндокард левого желудочка в конце систолы и задайте длинную ось — получится ESV(A4C);

- 4. Если рост и вес уже введены, рассчитаются параметры SV, EF и SI.
- 5. Измерьте HR (частоту сердечных сокращений) в М-режиме/допплеровском режиме, или выберите источник HR с помощью рукоятки сенсорного экрана: ЕСG или Ввод.

СО и СІ рассчитаются автоматически.

Cube

■ Инструменты исследования

Инструменты	Описания	Операции	
Диастола	Измерение левого желудочка в конце диастолы	«Лин.сгиб» в режиме 2D	
Систола	Измерение левого желудочка в конце систолы	Метод «Параллел» в М-режиме	
LVIDd	Конечно-диастолический внутренний диаметр левого желудочка	«Отрезок» в общих измерениях в	
LVIDs	Конечно-систолический внутренний диаметр левого желудочка	режиме 2D/М	
ЧСС	Частота сердечных сокращений	С помощью ЭКГ, прямой ввод или измерение вручную	

Результаты исследования

Инструменты	Описания	Формулы	
IVSd	Конечно-диастолическая толщина межжелудочковой перегородки		
LVPWd	Конечно-диастолическая толщина задней стенки левого желудочка	«Отрезок» в общих измерениях в режиме 2D/М	
IVSs	Конечно-систолическая толщина межжелудочковой перегородки		
LVPWs	Конечно-систолическая толщина задней стенки левого желудочка		
EDV(Cube)	Конечно-диастолический объем левого желудочка	EDV(мл)= LVIDd(см) ³	
ESV(Cube)	Конечно-систолический объем левого желудочка	ESV(мл)= LVIDs(см) ³	
SV(Cube)	Ударный объем		
CO(Cube)	Сердечный выброс		
EF(Cube)	Фракция выброса		
FS(Cube)	Фракционное укорочение	См. таблицу в разделе «6.4.3.1	
MVCF(Cube)	Средняя скорость укорочения периферических волокон	Функция левого желудочка»	
SI(Cube)	Ударный индекс		
Cl(Cube)	Индекс сердечного выброса		

■ Порядок действий (для примера возьмём метод, использующий LVIDd, LVIDs, HR)

- 1. В меню измерения выберите пункт [Cube].
- Измерьте LVIDd в режиме 2D или M. Будут получены значения LVIDd и EDV.
- Измерьте LVIDs в режиме 2D или M. Будут получены значения LVIDs и ESV. Система рассчитает SV, EF и FS.
- 4. Измерьте HR (частоту сердечных сокращений) в М-режиме/допплеровском режиме, или выберите источник HR с помощью рукоятки сенсорного экрана: ЕСG или Ввод.

Если рост и вес уже введены, рассчитаются параметры SI, CO и CI.

Если измерена LVEF, рассчитается MVCF.

На экране [Предуст.]-[Предуст.сист.]-[Приложение] можно выбрать метод для анализа Куб/Teichholz/HR.
Teichholz

- Инструменты Описания Операции Измерение левого желудочка в конце Диастола диастолы «Лин.сгиб» в режиме 2D Метод «Параллел» в М-режиме Измерение левого желудочка в конце Систола систолы Конечно-диастолический внутренний LVIDd диаметр левого желудочка «Отрезок» в общих измерениях в режиме 2D/М Конечно-систолический внутренний LVIDs диаметр левого желудочка С помощью ЭКГ, прямой ввод ЧСС Частота сердечных сокращений или измерение вручную
- Инструменты исследования

• Результаты исследования

Инструменты	Описания	Формулы	
IVSd	Конечно-диастолическая толщина межжелудочковой перегородки		
LVPWd	Конечно-диастолическая толщина задней стенки левого желудочка	«Отрезок» в общих измерениях	
IVSs	Конечно-систолическая толщина межжелудочковой перегородки	в режиме 2D/М	
LVPWs	Конечно-систолическая толщина задней стенки левого желудочка		
EDV(Teichholz)	Конечно-диастолический объем левого желудочка	EDV(мл)=(7×(LVIDd(см)) ³)/(2,4+ LVIDd(см))	
KCO(Teichholz)	Конечно-систолический объем левого желудочка	ESV(мл)=(7×(LVIDs(см)) ³)/(2,4+ LVIDs(см))	
SV(Teichholz)	Ударный объем		
CO(Teichholz)	Сердечный выброс		
EF(Teichholz)	Фракция выброса		
FS(Teichholz)	Фракционное укорочение	См. таблицу в разделе «6.4.3.1	
MVCF(Teichholz)	Средняя скорость укорочения периферических волокон	Функция левого желудочка»	
SI(Teichholz)	Ударный индекс		
CI(Teichholz)	Индекс сердечного выброса		

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице.

Процедуры измерения см. в разделе «Cube».

На экране [Предуст.]-[Предуст.сист.]-[Приложение] можно выбрать метод для анализа Куб/Teichholz/HR.

Gibson

■ Инструменты исследования

Инструменты	Описания	Операции	
Диастола	Измерение левого желудочка в конце диастолы	«Лин.сгиб» в режиме 2D	
Систола	Измерение левого желудочка в конце систолы	- Метод «Параллел» в М-режиме	
LVIDd	Конечно-диастолический внутренний диаметр левого желудочка	«Отрезок» в общих измерениях в режиме 2D/М	
LVIDs	Конечно-систолический внутренний диаметр левого желудочка		
ЧСС	Частота сердечных сокращений	С помощью ЭКГ, прямой ввод или измерение вручную	

Результаты исследования

Инструменты	Описания	Формулы
IVSd	Конечно-диастолическая толщина межжелудочковой перегородки	
LVPWd	Конечно-диастолическая толщина задней стенки левого желудочка	«Отрезок» в общих измерениях в
IVSs	Конечно-систолическая толщина межжелудочковой перегородки	режиме 2D/М
LVPWs	Конечно-систолическая толщина задней стенки левого желудочка	
EDV(Gibson)	Конечно-диастолический объем левого желудочка	$EDV(ml) = \frac{\pi}{6} \times (0.98 \times LVIDd(cm) + 5.90) \times LVIDd(cm)^{2}$
ESV(Gibson) Конечно-систолический объем левого желудочка		$ESV(ml) = \frac{\pi}{6} \times (1.14 \times LVIDs(cm) + 4.18) \times LVIDs(cm)^2$
SV(Gibson)	Ударный объем	
CO(Gibson)	Сердечный выброс	
EF(Gibson)	Фракция выброса	
SI(Gibson)	Ударный индекс	См. таблицу в разделе «6.4.3.1
CI(Gibson)	Индекс сердечного выброса	Функция левого желудочка»
MVCF(Gibson)	Средняя скорость укорочения периферических волокон	
FS(Gibson)	Фракционное укорочение	

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице. Процедуры измерения см. в разделе «Cube».

6.4.3.2 Масса левого желудочка (LV Mass)

Позволяет оценить индекс массы левого желудочка (LV Mass-I) посредством расчета параметра «LV Mass».

LV MASS-I (безразмерная величина) = LV Mass (г)/Площадь поверхности тела (м²)

LV Mass (Cube)

Инструменты исследования

Инструменты	Описания	Операции
IVSd	Конечно-диастолическая толщина межжелудочковой перегородки	
LVIDd	Конечно-диастолический внутренний диаметр левого желудочка	«Отрезок» в общих измерениях в режиме 2D/М
LVPWd	Конечно-диастолическая толщина задней стенки левого желудочка	•

• Результаты исследования

Инструменты	Описания	Формулы
LV Mass (Cube)	Масса левого желудочка	LV Mass (r) = 1,04 × ((LVPWd(cm) + IVSd(cm) + LVIDd(cm)) ³ - LVIDd(cm) ³) - 13,6
LV MASS-I (Cube)	Индекс массы левого желудочка	См. формулу «LV Mass-I» в разделе «Macca левого желудочка (LV Mass)»

Порядок действий

- 1. В меню измерения выберите пункт [LV Mass (Cube)].
- 2. В конце диастолы измерьте следующие параметры:

IVSd

LVIDd

LVPWd

Рассчитается параметр «LV Mass (Cube)».

Если рост и вес уже введены, рассчитается параметр «LV Mass-I(Cube)».

LV Mass (A-L)

■ Инструменты исследования

Инструменты	Описания	Операции	
LVAd sax Epi	Конечно-диастолическая площадь эпикарда левого желудочка на уровне папиллярной мышцы в проекции вдоль короткой оси	«Площ» в общих	
LVAd sax Endo	Конечно-диастолическая площадь эндокарда левого желудочка на уровне папиллярной мышцы в проекции вдоль короткой оси	измерениях в режиме 2D	
LVLd апик.	Конечно-диастолическая длина левого желудочка вдоль длинной оси в апикальной проекции	«Отрезок» в общих измерениях в режиме 2D	

Результаты исследования

Инструменты	Описания	Формулы
LV Mass (A-L)	Масса левого желудочка	*1
LV Mass-I (A-L)	Индекс массы левого желудочка	См. формулу «LV Mass-I» в разделе «Масса левого желудочка (LV Mass)»

*1 означает:

 $LV Mass(g) = 1.05 \times 5/6 \times (LVAd sax Epi(cm²) \times (LVLd apical(cm) + t(cm))$

- LVAd sax Endo (cm²)×LVL(cm))

Где:

t (cm)= $\sqrt{(LVAdsax Epi(cm^2)/\pi)} - \sqrt{(LVAdSax Endo(cm^2)/\pi)}$

Порядок действий

- 1. В меню измерения выберите пункт [LV Mass (A-L)].
- 2. В проекции вдоль длинной оси измерьте параметр «LVLd апик.» в конце диастолы.
- 3. В проекции вдоль короткой оси на уровне папиллярной мышцы измерьте следующие параметры в конце диастолы:

Площадь эндокарда: LVAd sax Endo

Площадь эпикарда: LVAd sax Epi

Рассчитается параметр «LV Mass (A-L)».

Если рост и вес уже введены, рассчитается параметр «LV Mass-I(A-L)».

LV Mass (T-E)

Инструменты исследования

Инструменты	Описания	Операции	
LVAd sax Epi	Конечно-диастолическая площадь эпикарда левого желудочка на уровне папиллярной мышцы в проекции вдоль короткой оси	«Площ» в общих измерениях в режиме 2D	
LVAd sax Endo	Конечно-диастолическая площадь эндокарда левого желудочка на уровне папиллярной мышцы в проекции вдоль короткой оси		
а	Большая полуось от самого широкого радиуса малой оси до верхушки		
d	Усеченная большая полуось от самого широкого радиуса малой оси до плоскости митрального кольца	измерениях в режиме 2D	

Результаты исследования

Помимо значений, перечисленных выше в таблице, в этом исследовании можно получить следующие результаты:

Инструменты	Описания	Формулы
LV Mass (T-E)	Масса левого желудочка	*1
LV MASS-I (T-E)	Индекс массы левого желудочка	См. формулу «LV Mass-I» в разделе «Масса левого желудочка (LV Mass)»

*1 означает:

LV Mass(g) =
$$1.05\pi \times \{(b+t)^2 \times [\frac{2(a+t)}{3} + d - \frac{d^3}{3(a+t)^2}] - b^2 \times (\frac{2a}{3} + d - \frac{d^3}{3a^2})\}$$

Где a, b, d, t измеряются в см.

- а: Большая полуось от самого широкого радиуса малой оси до верхушки
- d: Усеченная большая полуось от самого широкого радиуса малой оси до плоскости митрального кольца
- t: Толщина миокарда

t (cm) = $\sqrt{(LVAd \operatorname{sax} \operatorname{Epi}(cm^2)/\pi)} - \sqrt{(LVAd \operatorname{Sax} \operatorname{Endo}(cm^2)/\pi)}$

b: Радиус короткой оси, обычно измеряемый в месте наибольшего радиуса.

 $b(cm) = \sqrt{(LVAd Sax Endo(cm^2)/\pi)}$

- Порядок действий
- 1. В меню измерения выберите пункт [LV Mass(T-E)].
- 2. В проекции вдоль короткой оси на уровне папиллярной мышцы измерьте следующие параметры в конце диастолы:

Площадь эндокарда: LVAd sax Endo

Площадь эпикарда: LVAd sax Epi

3. Измерьте а и d.

Рассчитается параметр «LV Mass(T-E)».

Если рост и вес уже введены, рассчитается параметр «LV Mass-I(T-E)».

6.4.3.3 Площадь митрального клапана (MVA)

Площадь митрального клапана (MVA) можно рассчитать двумя методами: полупериод давления (PHT) или интеграл скорости по времени (VTI).

Советы: Расчет МVA методом PHT следует выполнять в режиме CW (формулу расчета см. в описании инструмента MVA(PHT) в разделе «6.3.3 Кардиологические измерения в допплеровском режиме»).

MVA(VTI)

Инструменты исследования

Инструменты	Описания	Операции
Диам.LVOT	Диаметр выносящего тракта левого желудочка	«Отрезок» в общих измерениях в режиме 2D
LVOT VTI	Интеграл скорости по времени в выносящем тракте левого желудочка	«Д конт.» в общих
MV VTI	Интеграл скорости по времени в митральном клапане	допплеровских измерениях

Результаты исследования

Помимо значений, перечисленных выше в таблице, в этом исследовании можно получить следующие результаты:

Инструменты	Описания	Формулы
MVA(VTI)	Площадь митрального клапана	$MVA(VTI)(cm^{2}) = \frac{\pi \times LVOT VTI(cm) \times LVOT Diam(cm^{2})^{2}}{4 \times MV VTI(cm) }$

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице.

6.4.3.4 AVA(VTI)

Площадь аортального клапана (AVA) можно рассчитать методом интеграла скорости по времени (VTI). Измерения следует выполнять на изображении в режиме 2D или допплеровском режиме.

Инструменты исследования

Инструменты	Описания	Операции
Диам.LVOT	Диаметр выносящего тракта левого желудочка	«Отрезок» в общих измерениях в режиме 2D
LVOT VTI	Интеграл скорости по времени в выносящем тракте левого желудочка	«Д конт.» в общих
AV VTI	Интеграл скорости по времени в аортальном клапане	допплеровских измерениях

Результаты исследования

Помимо значений, перечисленных выше в таблице, в этом исследовании можно получить следующие результаты:

Инструменты	Описания	Формулы
AVA(VTI)	Площадь аортального клапана	$AVA(VTI)(cm^{2}) = \frac{\pi \times LVOTVTI(cm) \times LVOTDiam(cm^{2})^{2}}{4 \times AVVTI(cm) }$

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице.

6.4.3.5 LA Vol

«LA Vol» (Объем левого предсердия) используется для оценки размера левого предсердия.

LA Vol(A-L)

Оценка объема левого предсердия с помощью площади и длины.

■ Инструменты исследования

Инструменты	Описания	Операции
Диам.LA	Диаметр левого предсердия	«Отрезок» в общих измерениях в режиме 2D
LAA(A2C)	Площадь левого предсердия в апикальной 2-камерной проекции «Площ» в общих измерения»	
LAA(A4C)	Площадь левого предсердия в апикальной 4-камерной проекции	режиме 2D

Результаты исследования

Помимо значений, перечисленных выше в таблице, в этом исследовании можно получить следующие результаты:

Инструменты	Описания	Формулы
LA Vol(A-L)	Площадь левого предсердия	LA Vol(A-L)(ml) = $\frac{8\pi}{3}$ LAA(A4C)(cm ²)×LAA(A2C)(cm ²)/LA Diam(cm)

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице.

LA Vol(Simp)

Оценка объема левого предсердия с помощью метода Симпсона (Simpson). Выполняется на апикальной 2-камерной проекции и апикальной 4-камерной проекции.

• Инструменты и результаты исследования

Инструменты	Описания	Операции
LA Vol(A2C)	Объем левого предсердия в апикальной 2-камерной проекции	То же самое, что и в
LA Vol(A2C)	Объем левого предсердия в апикальной 4-камерной проекции	измерении Simpson SP

Порядок действий

Процедуры измерения см. в разделе «Simpson SP».

6.4.3.6 RA Vol(Simp)

Оценка объема правого предсердия с помощью методов Симпсона (Simpson), выполняемая на апикальной 4-камерной проекции.

■ Инструменты и результаты исследования

Инструменты	Описания	Операции
RA Vol(A4C)	Объем правого предсердия в апикальной 4-камерной проекции	То же самое, что и в измерении Simpson SP

Порядок действий

Процедуры измерения см. в разделе «Simpson SP».

6.4.3.7 LVIMP

Индекс производительности миокарда левого желудочка (LVIMP) используется для анализа общих диастолических и систолических возможностей желудочка.

Инструменты исследования

Инструменты	Описания	Операции
MV C-O dur	Длительность закрытия- открытия митрального клапана	«Время» в общих измерениях в М-
LVET	Время выброса левого желудочка	режимсяденны сровеком режиме

Результаты исследования

Помимо значений, перечисленных выше в таблице, в этом исследовании можно получить следующие результаты:

Инструменты	Описания	Формулы
LVIMP	Индекс производительности миокарда левого желудочка	$LVIMP(Nounit) = \frac{MV C - O dur(s) - LVET(s)}{LVET(s)}$

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице.

6.4.3.8 RVSP

RVSP измеряет систолическое давление в правом желудочке.

Инструменты исследования

Инструменты	Описания	Операции
Vмак ТР	Максимальная скорость трикуспидальной регургитации	«Ск. D» в общих измерениях в допплеровском режиме
RAP	Давление в правом предсердии	См. ниже

Результаты исследования

Помимо значений, перечисленных выше в таблице, в этом исследовании можно получить следующие результаты:

Инструменты	Описания	Формулы
РGмак TR	Градиент давления при регургитации в трехстворчатом клапане	РGмак TR (мм рт. ст.) = 4 × Vмак TR (м/с) ²
RVSP	Систолическое давление правого желудочка	$RVIMP(Nounit) = \frac{TVC - Odur(s) - RVET(s)}{RVET(s)}$

- Порядок действий
- 1. В меню измерения выберите пункт [RVSP].
- 2. Измерьте «Vмак TR» в допплеровском режиме. Рассчитается параметр «PGмак TR».

3. В подменю [RVSP] выберите пункт [RAP], и во всплывающем диалоговом окне выберите (или введите) давление,

Диапазон ввода — [0, 50,0 мм рт. ст.].

4. После выбора (или ввода) давления нажмите кнопку [Готов], и получится значение RAP. Рассчитается параметр «RVSP».

6.4.3.9 PAEDP

РАЕDР измеряет конечно-диастолическое давление в легочной артерии.

Инструменты исследования

Инструменты	Описания	Операции
PR Ved	Конечно-диастолическая скорость при регургитации в легочном клапане	«Ск. D» в общих измерениях в допплеровском режиме
RAP	Давление в правом предсердии	См. измерение RAP в разделе «RVSP»

Результаты исследования

Помимо значений, перечисленных выше в таблице, в этом исследовании можно получить следующие результаты:

Инструменты	Описания	Формулы
PR PGed	Конечно- диастолический градиент давления при регургитации в легочном клапане	1
PAEDP	Конечное- диастолическое легочное давление	$RVSP(mmHg) = RAP(mmHg) + 4 \times (TR V \max(m/s))^{2}$

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице.

6.4.3.10 RVIMP

Измерение RVIMP (Индекс производительности миокарда правого желудочка) аналогично измерению LVIMP.

Инструменты исследования

Инструменты	Описания	Операции
TV C-O dur	Длительность закрытия-открытия трехстворчатого клапана	«Время» в общих измерениях в
RVET	Время выброса правого желудочка	допплеровском режиме

Результаты исследования

Помимо значений, перечисленных выше в таблице, в этом исследовании можно получить следующие результаты:

Инструменты	Описания	Формулы
RVIMP	Индекс производительности миокарда правого желудочка	$RVIMP(Nounit) = \frac{TVC - Odur(s) - RVET(s)}{RVET(s)}$

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице.

6.4.3.11 Qp/Qs

Отношение потоков малого круга кровообращения и большого круга кровообращения.

Инструменты исследования

Инструменты	Описания	Операции
Диам.AV	Диаметр аортального клапана	«Отрезок» в общих измерениях в режиме 2D
ДмтрРV	Диаметр клапана легочной артерии	
AV VTI	Интеграл скорости по времени в аортальном клапане	«Д конт.» в общих измерениях в
PV VTI	Интеграл скорости по времени в легочном клапане	допплеровском режиме

Результаты исследования

Помимо значений, перечисленных выше в таблице, в этом исследовании можно получить следующие результаты:

Инструменты	Описания	Операции
AV HR	ЧСС в аортальном клапане	Получается на основе измерения «AV VTI»
AV SV	Ударный объем аортального клапана	
AV CO	Сердечный выброс аортального клапана	
PV HR	ЧСС в легочном клапане	_
PV SV	Ударный объем в легочном клапане	Получается на основе измерения «PV VTI»
PV CO	Сердечный выброс легочного клапана	
Qp/Qs	Отношение потоков малого круга кровообращения и большого круга кровообращения.	Qp/Qs(безразмерная величина) = PV CO(л/мин)/AV CO(л/мин)
Qp-Qs	Разность потоков малого круга кровообращения и большого круга кровообращения.	Qp-Qs(л/мин) = PV CO(л/мин) - AV CO(л/мин)

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице.

6.4.3.12 PISA

Площадь проксимальной поверхности одинаковой скорости (PISA) используется для качественного анализа регургитации в митральном клапане (PISA MR), регургитации в аортальном клапане (PISA AR), регургитации в трехстворчатом клапане (PISA TR) и регургитации в легочном клапане (PISA PR) в цветовом режиме.

Процедуры измерения «PISA» следующие:

- 1. Начните измерение «PISA», переместите полукруглый измеритель, вращая трекбол.
- 2. Зафиксируйте центр полукруга, нажав клавишу <Set> (Установить).
- 3. Вращая трекбол, скорректируйте ориентацию длины радиуса.
- 4. Нажмите клавишу <Set> (Установить), чтобы зафиксировать измеритель.

PISA MR

Регургитацию в митральном клапане (PISA MR) нужно измерять в цветовом или допплеровском режиме.

Инструменты исследования

Инструменты	Описания	Операции
MR Rad	Радиус стеноза митрального клапана	Измерение PISA
MR VTI	Интеграл скорости митральной регургитации по времени	«Д конт.» в общих измерениях в допплеровском режиме
Maксимальная скорость Haложения спектров при регургитации в митральном клапане		Можно использовать скорость наложения верхнего или нижнего спектра, или ввести значение напрямую.
Результаты и	сследования	

Инструменты	Описания	Формулы
Vмак MR	Максимальная скорость митральной регургитации	Получается на основе измерения «MR VTI».
Поток MR	Поток митральной регургитации	$MR Flow(ml) = \frac{2\pi MR Rad(cm)^2 \times MR Als. Vel(cm/s)}{ MRV max(cm/s) } \times MR VTI(cm) $
Ск.потока MR	Скорость потока митральной регургитации	MR Flow Rate(ml/s) = 2π MR Rad(cm) ² × MR Als.Vel(cm/s)
Фракция MR	Фракция регургитации в митральный клапан	$MRF(Nounit) = \frac{MR Flow(ml)}{MV SV(ml)} \times 100\%$
MR EROA	Эффективная площадь отверстия регургитации в митральный клапан	$MR EROA(cm)^{2} = \frac{2\pi MR Rad(cm)^{2} \times MR Als.Vel(cm/s)}{ MRV max(cm/s) }$

- Порядок действий
- 1. Перейдите в цветовой режим и регулируйте цветовую карту до тех пор, пока не появится наложение спектров.
- 2. В меню измерения выберите пункт [PISA MR].
- 3. Измерьте параметр «MR Rad» с помощью измерителя PISA.

Введите значение «MR Als.Vel.»

4. С помощью инструмента «Д конт.» измерьте спектр митральной регургитации (MR), чтобы получить:

Vмак MR

MR VTI

«Поток MR», «Ск.потока MR» и «MR EROA» рассчитаются автоматически.

Если измерен параметр «MV SV», то «Фракция MR» рассчитается автоматически.

PISA AR

Регургитацию в аортальном клапане (PISAAR) нужно измерять в цветовом или допплеровском режиме.

■ Инструменты исследования

Инструменты	Описа	яния	Операции
AR Rad	Радиус стеноза а клапана	аортального	Измерение PISA
AR VTI	Интеграл скорос регургитации по	ти аортальной времени	«Д конт.» в общих измерениях в допплеровском режиме
AR Als.Vel	Максимальная с наложения спект регургитации в а клапане	корость гров при юртальном	Можно использовать скорость наложения верхнего или нижнего спектра, или ввести значение напрямую.
Результаты	исследования		
Инструменты	Описания		Формулы
Vмак AR	Максимальная скорость аортальной регургитации	Получается на основе измерения «AR VTI»	
Поток AR	Поток аортальной регургитации	$AR Flow(ml) = \frac{2\pi AR \text{ Rad}(cm)^2 \times AR \text{ Als.Vel}(cm/s)}{ ARV \max(cm/s) } \times AR \text{ VTI}(cm/s) $	
Ск.потока AR	Скорость потока аортальной регургитации	AR Flow Rate(ml/s) = $2\pi AR \operatorname{Rad}(\operatorname{cm})^2 \times AR \operatorname{Als.Vel}(\operatorname{cm/s})$	
Фракция AR	Фракция регургитации в аортальный клапан	AR Fraction(N ounit) = $\frac{AR Flow(ml)}{AV SV(ml)} \times 100 \%$	
AR EROA	Эффективная площадь отверстия регургитации в аортальный клапан	AR EROA(cm)	$^{2} = \frac{2\pi AR \text{ Rad}(\text{cm})^{2} \times AR \text{ Als.Vel}(\text{cm/s})}{ ARV \max(\text{cm/s}) }$

Порядок действий

Тот же, что и при измерении «PISA MR».

PISA TR

Регургитацию в трехстворчатом клапане (PISA TR) нужно измерять в цветовом или допплеровском режиме.

■ Инструменты исследования

Инструменты	Описания	Операции
TR Rad	Радиус стеноза трехстворчатого клапана	Измерение PISA
ИСВ ТР	Интеграл скорости трикуспидальной регургитации по времени	«Д конт.» в общих измерениях в допплеровском режиме
TR Als.Vel	Максимальная скорость наложения спектров при регургитации в трехстворчатом клапане	Можно использовать скорость наложения верхнего или нижнего спектра, или ввести значение напрямую.

Результаты исследования

Инструменты	Описания	Формулы
Vмак ТР	Максимальная скорость трикуспидальной регургитации	Получается на основе измерения «TR VTI»
Поток TR	Поток трикуспидальной регургитации	$TR Flow(ml) = \frac{2\pi TR Rad(cm)^2 \times TR Als.Vel(cm/s)}{ TRV max(cm/s) } \times TR VTI(cm) $
Ск.потока TR	Скорость потока трикуспидальной регургитации	TR Flow Rate(ml/s) = 2π TR Rad(cm) ² × TR Als.Vel(cm/s)
Фракция TR	Фракция регургитации в трехстворчатый клапан	TR Fraction(N ounit) = $\frac{\text{TR Flow(ml)}}{\text{TV SV(ml)}} \times 100 \%$
TR EROA	Эффективная площадь отверстия регургитации в трехстворчатый клапан	TR EROA(cm) ² = $\frac{2\pi TR \text{ Rad}(\text{cm})^2 \times TR \text{ Als.Vel}(\text{cm/s})}{ \text{TRV max}(\text{cm/s}) }$

Порядок действий

Тот же, что и при измерении «PISA MR».

PISA PR

Регургитацию в легочном клапане (PISA PR) нужно измерять в цветовом или допплеровском режиме.

Инструменты	Описания	Операции
PR Rad	Радиус стеноза легочного клапана	Измерение PISA
PR VTI	Интеграл скорости по времени при регургитации в трехстворчатом клапане	«Д конт.» в общих измерениях в допплеровском режиме
PR Als.Vel	Максимальная скорость наложения спектров при регургитации в легочном клапане	Можно использовать скорость наложения верхнего или нижнего спектра, или ввести значение напрямую.

■ Инструменты исследования

Результаты исследования		
Инструменты	Описания	Формулы
Vмак PR	Максимальная скорость легочной регургитации	Получается на основе измерения «PR VTI»
Поток PR	Поток легочной регургитации	$PR Flow(ml) = \frac{2\pi PR Rad(cm)^2 \times PR Als.Vel(cm/s)}{ PRV max(cm/s) } \times PR VTI(cm) $
Ск.потока PR	Скорость потока легочной регургитации	PR Flow Rate(ml/s) = 2π PR Rad(cm) ² × PR Als.Vel(cm/s)
Фракция PR	Фракция регургитации в легочный клапан	PR Fraction(N ounit) = $\frac{PR Flow(ml)}{PV SV(ml)} \times 100 \%$
PR EROA	Эффективная площадь отверстия регургитации в легочный клапан	PR EROA(cm) ² = $\frac{2\pi PR \text{ Rad}(cm)^2 \times PR \text{ Als.Vel}(cm/s)}{ PRV \max(cm/s) }$
— — — — — — — — — —	××	

Порядок действий

Тот же, что и при измерении «PISA MR».

6.4.3.13 TDI

■ Инструменты исследования

Инструменты	Описания	Операции
Сс(средин)	Движение медиальной части митрального клапана в систолу	
Рс(средин)	Раннее движение медиальной части митрального клапана в диастолу	«Ск. D» в общих измерениях в допплеровском режиме
Пс(средин)	Позднее движение медиальной части митрального клапана в диастолу	
ARa(средин)	Темп ускорения медиальной части митрального клапана	«Ускорение» в общих
DRa(средин)	Темп замедления медиальной части митрального клапана	режиме
Сс(боков)	Движение латеральной части митрального клапана в систолу	
Рс(боков)	Раннее движение латеральной части митрального клапана в диастолу	«Ск. D» в общих измерениях в допплеровском режиме
Пс(боков)	Позднее движение латеральной части митрального клапана в диастолу	
ARa(боков)	Темп ускорения латеральной части митрального клапана	«Ускорение» в общих
DRa(боков)	Темп замедления латеральной части митрального клапана	режиме

• Результаты исследования

Инструменты	Описания	Формулы
Еу/Ау(средин)	E Vel/A Vel в медиальной части митрального клапана	$Ea/Aa(medial)(Nounit) = \frac{Ea(medial)}{Aa(medial)}$
АТа(средин)	Время ускорения пика Е в медиальной части митрального клапана	Получается на основе измерения «ARa(средин)»
DTa(средин)	Время замедления пика Е в медиальной части митрального клапана	Получается на основе измерения «DRa(средин)»
Еу/Ау(боков)	E Vel/A Vel в латеральной части митрального клапана	$Ea/Aa(lateral)(Nounit) = \frac{Ea(laterall)}{Aa(laterall)}$
АТа(боков)	Время ускорения пика Е в латеральной части митрального клапана	Получается на основе измерения «ARa(боков)»
DTa(боков)	Время замедления пика Е в латеральной части митрального клапана	Получается на основе измерения «DRa(боков)»

Порядок действий

Методы и формулы для измерений см. в приведенной выше таблице.

6.5 Отчет по кардиологическому исследованию

Во время или по окончании измерения нажмите клавишу <Report> (Отчет) на панели управления, чтобы просмотреть отчет.

Подробнее о просмотре, печати, экспорте и других операциях с отчетом см. в разделе «1.7 Отчет».

6.6 Литература

Площадь поверхности тела (BSA):

DuBois, D., DuBois, E.F. A Formula to Estimate the Approximate Surface Area if Height and Weight Be Known (Формула для вычисления приблизительной площади поверхности при известных данных роста и веса). Nutrition, Sept-Oct 1989, Vol. 5, No. 5, pp. 303-313.

EDV(S-P Ellipse):

Folland, E.D., et al. Assessment of Left Ventricular Ejection Fraction and Volumes by Real-Time, Two-Dimensional Echocardiography (Оценка фракции выброса и объемов левого желудочка методом двумерной эхокардиографии в масштабе реального времени). Circulation, October 1979, Vol. 60, No.4, pp. 760-766

ESV(S-P Ellipse):

Folland, E.D., et al. Assessment of Left Ventricular Ejection Fraction and Volumes by Real-Time, Two-Dimensional Echocardiography (Оценка фракции выброса и объемов левого желудочка методом двумерной эхокардиографии в масштабе реального времени). Circulation, October 1979, Vol. 60, No.4, pp. 760-766.

Ударный объем (SV):

- Gorge, G., et al. High Resolution Two-dimensional Echocardiography Improves the Quantification of Left Ventricular Function (Метод двумерной эхокардиографии высокого разрешения совершенствует количественный анализ функции левого желудочка). Journal of the American Society of Echocardiography 1992, 5: 125-34.
- Roelandt, Joseph, Practical Echocardiology (Практическая эхокардиография), vol. 1 of Ultrasound in Medicine Series, ed. Denis White, Research Studies Press, 1977, p. 124.

Фракция выброса (EF):

Pombo, J.F. Left Ventricular Volumes and Ejection by Echocardiography (Определение объемов и фракции выброса левого желудочка методом эхокардиографии). Circulation, 1971, Vol. 43, pp. 480-490.

Индекс ударного объема (SI):

- Gorge, G., et al. High Resolution Two-dimensional Echocardiography Improves the Quantification of Left Ventricular Function (Метод двумерной эхокардиографии высокого разрешения совершенствует количественный анализ функции левого желудочка). Journal of the American Society of Echocardiography 1992, 5: 125-34.
- Roelandt, Joseph, Practical Echocardiology (Практическая эхокардиография), vol. 1 of Ultrasound in Medicine Series, ed. Denis White, Research Studies Press, 1977, p. 124.

Сердечный выброс (СО):

Belenkie, Israel, et al. Assessment of Left Ventricular Dimensions and Function by Echocardiography (Оценка размеров и функции левого желудочка методом эхокардиографии). American Journal of Cardiology, June 1973, Vol. 31. Индекс сердечного выброса (CI):

- The Merck Manual of Diagnosis and Therapy (Руководство Merck по диагностике и терапии), ed. 15, Robert Berkon, ed., Merck and Co., Rahway, NJ, 1987, p. 378.
- Schiller, N.B., et al. Recommendations for Quantification of the LV by Two-Dimensional Echocardiography (Рекомендации по количественному анализу данных ЛЖ методом двумерной эхокардиографии). J Am Soc Echo, Sept.-Oct., 1989, Vol. 5, p. 364.

EDV(B-P Ellipse):

Folland, E.D., et al. Assessment of Left Ventricular Ejection Fraction and Volumes by Real-Time, Two-Dimensional Echocardiography (Оценка фракции выброса и объемов левого желудочка методом двумерной эхокардиографии в масштабе реального времени). Circulation, October 1979, Vol. 60, No.4, pp. 760-766

ESV(B-P Ellipse):

Folland, E.D., et al. Assessment of Left Ventricular Ejection Fraction and Volumes by Real-Time, Two-Dimensional Echocardiography (Оценка фракции выброса и объемов левого желудочка методом двумерной эхокардиографии в масштабе реального времени). Circulation, October 1979, Vol. 60, No.4, pp. 760-766

EDV(Bullet):

Folland, E.D., et al. Assessment of Left Ventricular Ejection Fraction and Volumes by Real-Time, Two-Dimensional Echocardiography (Оценка фракции выброса и объемов левого желудочка методом двумерной эхокардиографии в масштабе реального времени). Circulation, October 1979, Vol. 60, No.4, pp. 760-766

ESV (Bullet):

Folland, E.D., et al. Assessment of Left Ventricular Ejection Fraction and Volumes by Real-Time, Two-Dimensional Echocardiography (Оценка фракции выброса и объемов левого желудочка методом двумерной эхокардиографии в масштабе реального времени). Circulation, October 1979, Vol. 60, No.4, pp. 760-766

EDV (Simpson):

Weyman, Arthur E., Cross-Sectional Echocardiography, Lea & Febiger, 1985, p. 295.Folland, E.D., et al. Assessment of Left Ventricular Ejection Fraction and Volumes by Real-Time, Two-Dimensional Echocardiography (Оценка фракции выброса и объемов левого желудочка методом двумерной эхокардиографии в масштабе реального времени). Circulation, October 1979, Vol. 60, No.4, pp. 760-766

ESV (Simpson):

Weyman, Arthur E., Cross-Sectional Echocardiography, Lea & Febiger, 1985, p. 295.Folland, E.D., et al. Assessment of Left Ventricular Ejection Fraction and Volumes by Real-Time, Two-Dimensional Echocardiography (Оценка фракции выброса и объемов левого желудочка методом двумерной эхокардиографии в масштабе реального времени). Circulation, October 1979, Vol. 60, No.4, pp. 760-766

EDV (Simpson SP):

Schiller, N.B., et al. Recommendations for Quantification of the LV by Two-Dimensional Echocardiography (Рекомендации по количественному анализу данных ЛЖ методом двумерной эхокардиографии). Journal of the American Society of Echocardiography, Sept-Oct 1989, Vol.2, No. 5, p. 364.

ESV(Simpson SP):

Schiller, N.B., et al. Recommendations for Quantification of the LV by Two-Dimensional Echocardiography (Рекомендации по количественному анализу данных ЛЖ методом двумерной эхокардиографии). Journal of the American Society of Echocardiography, Sept-Oct 1989, Vol.2, No. 5, p. 364. EDV (Simpson BP):

Schiller, N.B., et al. Recommendations for Quantification of the LV by Two-Dimensional Echocardiography (Рекомендации по количественному анализу данных ЛЖ методом двумерной эхокардиографии). Journal of the American Society of Echocardiography, Sept-Oct 1989, Vol.2, No. 5, p. 364.

ESV (Simpson BP):

Schiller, N.B., et al. Recommendations for Quantification of the LV by Two-Dimensional Echocardiography (Рекомендации по количественному анализу данных ЛЖ методом двумерной эхокардиографии). Journal of the American Society of Echocardiography, Sept-Oct 1989, Vol.2, No. 5, p. 364.

EDV (Cube):

- Dodge, H.T., Sandler, D.W., et al. The Use of Biplane Angiography for the Measurement of Left Ventricular Volume in Man (Использование двухплоскостной ангиографии для измерения объема левого желудочка у человека). American Heart Journal, 1960, Vol. 60, pp. 762-776.
- Belenkie, Israel, et al. Assessment of Left Ventricular Dimensions and Function by Echocardiography (Оценка размеров и функции левого желудочка методом эхокардиографии). American Journal of Cardiology, June 1973, Vol. 31.

ESV (Cube):

- Dodge, H.T., Sandler, D.W., et al. The Use of Biplane Angiography for the Measurement of Left Ventricular Volume in Man (Использование двухплоскостной ангиографии для измерения объема левого желудочка у человека). American Heart Journal, 1960, Vol. 60, pp. 762-776.
- Belenkie, Israel, et al. Assessment of Left Ventricular Dimensions and Function by Echocardiography (Оценка размеров и функции левого желудочка методом эхокардиографии). American Journal of Cardiology, June 1973, Vol. 31.

Фракционное укорочение (FS):

Belenkie, Israel, et al. Assessment of Left Ventricular Dimensions and Function by Echocardiography (Оценка размеров и функции левого желудочка методом эхокардиографии). American Journal of Cardiology, June 1973, Vol. 31.

MVCF:

- Colan, S.D., Borow, K.M., Neumann, A. Left Ventricular End-Systolic Wall Stress-Velocity of Fiber Shortening Relation: A Load-Independent Index of Myocardial Contractility (Отношение напряжение-скорость при укорочении волокон миокарда в конце систолы левого желудочка: независящий от нагрузки индекс сократимости миокарда). J Amer Coll Cardiol, October, 1984, Vol. 4, No. 4, pp. 715-724.
- Snider, A.R., Serwer, G.A. Echocardiography in Pediatric Heart Disease (Эхокардиография при исследовании патологий сердца у детей). Year Book Medical Publishers, Inc., Littleton, MA, 1990, p. 83.

Teichholz:

Teichholz, L.E., et al. Problems in Echocardiographic Volume Determinations: Echocardiographic-Angiographic Correlations in the Presence or Absence of Asynergy (Проблемы определения объема методом эхокардиографии). American Journal of Cardiology, January 1976, Vol. 37, pp. 7-11

ММЛЖ:

John H. Phillips. Practical Quantitative Doppler Echocardiography (Практическая количественная Допплеровская эхокардиография), CRC Press, 1991, Page 96.

LV MASS-I:

■ John H. Phillips. Practical Quantitative Doppler Echocardiography (Практическая количественная Допплеровская эхокардиография), CRC Press, 1991, Page 96.

LA/Ao:

- Roelandt, Joseph, Practical Echocardiology (Практическая эхокардиография), Ultrasound in Medicine Series, Vol. 1, Denis White, ed., Research Studies Press, 1977, p. 270.
- Schiller, N.B., et al. Recommendations for Quantification of the LV by Two-Dimensional Echocardiography (Рекомендации по количественному анализу данных ЛЖ методом двумерной эхокардиографии). J Am Soc Echo, Sept.-Oct., 1989, Vol. 2, No. 5, p. 364.

MV CA/CE:

- Maron, Barry J., et al., Noninvasive Assessment of Left Ventricular Diastolic Function by Pulsed Doppler Echocardiography in Patients with Hypertrophic
- (Неинвазивная оценка диастолической функции левого желудочка методом импульсной допплеровской эхокардиографии у пациентов с гипертрофической кардиомиопатией). Ј Am Coll Cardio, 1987, Vol. 10, pp. 733-742.

MV E/A:

Maron, Barry J., et al. Noninvasive Assessment of Left Ventricular Diastolic Function by Pulsed Doppler Echocardiography in Patients with Hypertrophic Cardiomyopathy (Неинвазивная оценка диастолической функции левого желудочка методом импульсной допплеровской эхокардиографии у пациентов с гипертрофической кардиомиопатией). Journal of the American College of Cardiology, 1987, Vol. 10, pp. 733-742.

Полупериод давления (РНТ):

 Oh, J.K., Seward, J.B., Tajik, A.J. The Echo Manual (Руководство по эхографии). Boston: Little, Brown and Company, 1994, p.59-60.

Площадь митрального клапана:

- Goldberg, Barry B., Kurtz, Alfred B. Atlas of Ultrasound Measurements (Атлас ультразвуковых измерений). Year Book Medical Publishers, Inc., 1990, p. 65.
- Stamm, Brad, et al. Quantification of Pressure Gradients Across Stenotic Valves by Doppler Ultrasound (Количественный анализ градиентов давления в пораженных стенозом клапанах методом допплерографии). J Am Coll Cardiol, 1983, Vol. 2, No. 4, pp. 707-718.

Систолическое давление в правом желудочке:

- Stevenson, J.G. Comparison of Several Noninvasive Methods for Estimation of Pulmonary Artery Pressure (Сравнение нескольких неинвазивных методов в применении к определению давления в легочной артерии). Journal of the American Society of Echocardiography, June 1989, Vol. 2, pp. 157-171.
- Yock, Paul G. and Popp, Richard L. Noninvasive Estimation of Right Ventricular Systolic Pressure by Doppler Ultrasound in Patients with Tricuspid Regurgitation (Неинвазивное определение систолического давления в правом желудочке методом допплерографии у пациентов с регургитацией трехстворчатого клапана). Circulation, 1984, Vol. 70, No. 4, pp. 657-662.

7 Сосудистые измерения

7.1 Подготовка сосудистого исследования

Прежде чем выполнять измерение, выполните следующие подготовительные процедуры:

- 1. Подтвердите правильность выбора текущего датчика.
- 2. Проверьте правильность текущей даты системы.
- Нажмите клавишу <Patient> (Пациент) и введите сведения о пациенте на странице [Инф.пациента] -> [Сос].

Подробнее см. в разделе «Подготовка к исследованию -> Сведения о пациенте» руководства оператора [Стандартные процедуры].

4. Переключитесь на подходящий режим обследования.

7.2 Основные процедуры измерения сосудов

- 1. Нажмите клавишу <Patient> (Пациент) и введите сведения о пациенте на странице [Инф.пациента] -> [Сос].
- 2. Нажмите клавишу <Measure> (Измерить), чтобы перейти к специальным измерениям.
- 3. Чтобы начать измерение, выберите в меню или на сенсорном экране измерительный инструмент.

Инструменты измерения см. ниже в таблице раздела «7.3 Инструменты для сосудистых измерений».

Методы измерения см. в разделе «7.4 Выполнение сосудистых измерений» и описании этапов в разделе «3 Общие измерения».

4. Нажмите клавишу <Report> (Отчет), чтобы посмотреть отчет об исследовании (подробнее см. в разделе «7.5 Отчет о сосудистом исследовании»).

7.3 Инструменты для сосудистых измерений

Сосудистые измерения используются, прежде всего, для оценки сонной артерии, сосудов черепа, сосудов верхних и нижних конечностей.

Система поддерживает следующие инструменты сосудистых измерений в режиме 2D и допплеровском режиме.

ПРИМЕЧАНИЕ: Упоминаемые ниже инструменты сконфигурированы в системе. Как правило, пакеты специальных измерений, предоставляемые системой, являются различными сочетаниями измерительных инструментов.

Сосудистые измерения в режиме 2D

Типы	Инструменты	Описания	Методы или формулы		
Измерение	CCA IMT	Толщина интимы-медии (IMT) общей сонной артерии			
	IMT лук.	IMT луковички	Измерение исследуемой области в		
	ICA IMT	IMT внутренней сонной артерии			
	ECA IMT	IMT наружной сонной артерии			
Расчет	Диа.стеноз	Диаметр стеноза	Диа.стеноз (безразмерная величина) = (Норм.диам (см) – Ост.диам.(см))/Норм.диам (см) × 100 % Диа.стеноз (безразмерная величина) = (D1-D2) /MAX (D1, D2) *100% Где D1 и D2 - измеренный диаметр сосуда, а MAX (D1, D2) - большее из этих значений.		
	Пл стеноза Площадь стеноза		Пл стеноза (безразмерная величина) = (A1-A2) /MAX (A1, A2) *100% Где A1 и A2 - измеренная площадь сосуда, а MAX (D1, D2) - большее из этих значений.		
Исследование	IMT	Толщина интимы-медии	См. ниже		

Сосудистые измерения в допплеровском режиме

Типы	Инструменты Описания		Методы или формулы	
	CCA	Общая сонная артерия		
	Лук.	Луковица		
	ICA	Внутренняя сонная артерия	«Л конт.» в общих	
	ECA	Наружная сонная артерия	допплеровских	
Измерение	ПозвА	Позвоночная артерия	измерениях	
	Безым.А	Безымянная артерия		
	ПклчА	Подключичная артерия		
	ПодмА	Подмышечная артерия		
	ПлечА	Плечевая артерия	«Д конт.» в общих	
	ЛоктА	Локтевая артерия		
	ЛучА	Лучевая артерия	измерениях	
	ПклчА	Подключичная артерия		
	ПодмВ	Подмышечная вена		

Типы	Инструменты	Описания	Методы или формулы	
	ГоловВ	Головная вена		
	МПВР	Медиальная подкожная вена руки		
	ЛоктВ	Локтевая вена		
	ЛучВ	Лучевая вена		
	ОПвздА	Общая подвздошная артерия		
	Нар.подвз.арт	Наружная подвздошная артерия		
	CFA	Общая бедренная вена		
	SFA	Поверхностная бедренная артерия		
	ПколА	Подколенная артерия		
Измерение	ТРМбА	Большеберцовая- малоберцовая стволовая артерия	«Д конт.» в общих допплеровских измерениях	
	Малоб.арт	Малоберцовая артерия		
	ЗБберА	Задняя большеберцовая артерия		
	ПБберА	Передняя большеберцовая артерия		
	TAC	Тыльная артерия стопы		
	ОПвздВ	Общая подвздошная вена		
	Нар.подвз.вена	Наружная подвздошная вена		
	Бедр.вена	Общая бедренная вена		
	БолПодкожВена	Большая подкожная вена		
	ПколВ	Подколенная вена		
	ΤΡΜϬV	Большеберцовая- малоберцовая стволовая вена		
	ИкрНВ	Икроножная вена		
	КмблвВ	Вена камбаловидной мышцы		
	Малоб.вен	Малоберцовая вена		
Измерение	ЗБберВ	Задняя большеберцовая вена		
	ПБберВ	Передняя большеберцовая вена	 «Д конт.» в общих допплеровских измерениях 	
	ACA	Передняя мозговая артерия		
	MCA	Средняя мозговая артерия		
	PCA	Задняя мозговая артерия		
	AComA	Передняя соединительная ветвь		
	PComA	Задняя соединительная ветвь		

Типы	Инструменты	Описания	Методы или формулы	
	BA	Базилярная артерия		
	IIA	Внутренняя подвздошная артерия		
	PFA	Глубока бедренная артерия		
	БВ	Базилярная вена		
	ПлечВ	Плечевая вена		
Измерение	IIV	Внутренняя подвздошная «Д конт.» в общих допплеровских измерениях		
	CFV	Общая бедренная вена		
	SFV	Поверхностная бедренная вена		
	PFV	Глубокая бедренная вена		
	SSV	Малая подкожная вена		
	ASP	Лодыжечное систолическое давление	- Впечатайте	
	BSP	Плечевое систолическое давление		
Расчет	ICA/CCA(PS)	1	См. ниже	
Исследование	ABI	Лодыжечно-плечевой индекс	См. ниже	

7.4 Выполнение сосудистых измерений

Советы:	1.	Инструменты и методы измерения см. выше в таблице раздела «7.3 Инструменты для сосудистых измерений».
	2.	Определения измерения, расчета и исследования см. в разделе «1.3 Измерение, расчет и исследование».
	3.	Очередность измерений устанавливается предварительно (подробнее см. в разделе «2.4.2 Предварительная установка специальных измерений»).
	4.	Инструмент измерения можно активировать, выбрав пункт в меню измерения или на сенсорном экране, далее это описывается как «Выберите/нажмите(определённый пункт) в меню измерения».
	5.	Измерения с помощью некоторых инструментов, описанных в этой главе, предназначены для нескольких режимов формирования изображения. При измерении выбирайте подходящие режимы формирования изображения.

7.4.1 Работа с инструментами измерений

- 1. В меню измерения выберите пункт/инструмент.
- 2. Выполните измерение, используя методы из приведенной выше таблицы.

7.4.2 Работа с инструментами вычислений

Диа.стеноз

Назначение: измерение параметров «Норм.диам» и «Ост.диам.», вычисление параметра «Диа.стеноз».

- 1. В меню измерения выберите пункт [Диа.стеноз].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «Норм.диам» и «Ост.диам.».

«Диа.стеноз» рассчитается автоматически.

Пл стеноза

Назначение: измерение параметров «Норм.пл.» и «Остат.пл.», вычисление параметра «Пл стеноза».

- 1. В меню измерения выберите пункт [Пл стеноза].
- 2. С помощью метода «Площ» общих измерений в режиме 2D, измерьте «Норм.пл.» и «Остат.пл.».

«Пл стеноза» рассчитается автоматически.

ICA/CCA (PS)

Назначение: измерение отношения скорости потока между ІСА и ССА для оценки стеноза.

- 1. Выберите [ICA/CCA (PS)] в меню измерения.
- Измерьте значение PS для дистального ICA и CCA методом «2 PT» в «Д конт.», и система рассчитает параметры стеноза. ICA принимает максимальное из значений PS для проксимальной, средней и дистальной области.

7.4.3 Работа с инструментами исследования

IMT

ПРИМЕЧАНИЕ:	1.	Функция ІМТ доступна только в том случае, если она сконфигурирована.
	2.	Измерение IMT возможно только на стоп-кадре изображения (или прошлого изображения), полученного с помощью датчика с линейной решеткой.

Назначение: IMT (Толщина интимы-медии) измеряет расстояние между LI (Просвет-интима) и MA (Медия-адвентициальная оболочка).

Значения IMT определяются в четырех позициях: необходимо провести измерения «ССА» (Общая сонная артерия), «ICA» (Внутренняя сонная артерия), «ЕСА» (Наружная сонная артерия) и «Лук.» (Луковица).

- 1. Перейдите в режим исследования IMT, отсканируйте и сделайте стоп-кадр изображения (или выберите прошлое изображение в режиме просмотра).
- 2. В меню измерения выберите пункт [IMT] и перейдите к измерению IMT.
- 3. Выберите сторону («Лев»/«Прав»), угол и стенку сосуда («Близ»/«Дал»).
- 4. Выберите пункт (например [ICC IMT]), и на экране появится рамка исследуемой области.

Если выбрано «Близ», рамка выглядит так

Если выбрано «Дал», рамка выглядит так 🖽.

Советы	Перед измерением IMT правильно выберите стенку сосуда («Близ»/«Дал»),
	иначе интима может быть распознана неправильно, поскольку для
	распознавания ближней и дальней стенок используются разные алгоритмы.

5. Переместите рамку исследуемой области в требуемое положение и нажмите клавишу <Set> (Установить). В рамке появятся две линии автоматического построения контура.

Когда рамка исследуемой области окрашена в зеленый цвет, можно выполнить следующие операции:

- Отрегулируйте размер рамки исследуемой области.
- Сотрите линии контура внутри рамки, нажав клавишу <Clear> (Стереть). (Нажмите и удерживайте клавишу <Clear> (Стереть): с экрана исчезнут все измерители.)
- Нарисуйте контур вручную
 - a) Переместите курсор на линию контура. Линия контура станет желтой. Нажмите клавишу <Set> (Установить).
 - b) Перемещайте курсор вдоль границы раздела сосуда. Чтобы подтвердить контур после корректировки, нажмите клавишу <Set> (Установить).
- По завершении построения контура вручную уберите курсор из рамки и нажмите клавишу <Set> (Установить), чтобы подтвердить результат корректировки. Результаты зафиксируются в отчет об IMT.

Система рассчитывает следующие параметры:

- Максимальная IMT
- Минимальная IMT
- Средняя ІМТ
- Стандартное отклонение IMT
- > Длина исследуемой области IMT
- Длина измерения IMT
- Индекс качества IMT

Индекс качества показывает надежность измерения. В случае низкого значения индекса надежности рекомендуется построить контур вручную или выполнить повторное сканирование, чтобы получить изображение с четкими границами эндокарда.

Советы: Чтобы добиться хорошего контура, попробуйте установить рамку исследуемой области параллельно сосуду и отрегулируйте размер рамки, чтобы уменьшить нежелательные помехи.

В случае нескольких измерений на одной и той же стороне одного сосуда под одинаковым углом система рассчитывает следующие параметры для отчета:

- > Средняя арифметическая IMT
- Средняя максимальная IMT
- Стандартное отклонение

Кроме того, рассчитывается совокупная средняя ІМТ, которая представляет собой общее среднее значение всех средних значений ІМТ, полученных из измерений.

ABI

Назначение: расчет лодыжечно-плечевого индекса (ABI) путем измерения лодыжечного систолического давления (ASP) и плечевого систолического давления (BSP) на изображении в допплеровском режиме.

ABI = ASP/BSP

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно. В меню измерения выберите пункт [ABI].

- 1. В меню [ABI] нажмите пункт [ASP] и введите значение.
- 2. В меню [ABI] нажмите пункт [BSP] и введите значение. Система автоматически рассчитает ABI.

7.5 Отчет о сосудистом исследовании

Во время или по окончании измерения нажмите клавишу <Report> (Отчет) на панели управления, чтобы просмотреть отчет.

Подробнее о просмотре, печати, экспорте и других операциях с отчетом см. в разделе «1.7 Отчет».

В отчете об IMT записываются данные измерений IMT. В нем можно выбирать характеристики пациента (курит или нет, страдает диабетом или нет, и т. д.) и изменять имеющиеся данные.

7.6 Литература

- **Диа.стеноз:** Honda, Nobuo, et al. Echo-Doppler Velocimeter in the Diagnosis of Hypertensive Patients: The Renal Artery Doppler Technique (Эхо-Допплер велосиметр в диагностике пациентов с гипертензией: Допплеровский метод при исследовании почечных артерий). Ultrasound in Medicine and Biology, 1986, Vol. 12(12), pp. 945-952.
- **Пл стеноза:** Jacobs, Norman M., et al. Duplex Carotid Sonography: Criteria for Stenosis, Accuracy, and Pitfalls (Дуплексная сонография сонной артерии: критерии стеноза, точность и ошибки). Radiology, 1985, 154:385-391.

8 Гинекология

8.1 Подготовка гинекологического исследования

Прежде чем выполнять измерение, выполните следующие подготовительные процедуры:

- 1. Подтвердите правильность выбора текущего датчика.
- 2. Проверьте правильность текущей даты системы.
- Зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [GYN].

Подробнее см. в разделе «Подготовка к исследованию -> Сведения о пациенте» руководства оператора [Стандартные процедуры].

4. Переключитесь на подходящий режим обследования.

8.2 Основные процедуры гинекологических измерений

- 1. Зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [GYN].
- 2. Нажмите клавишу <Measure> (Измерить), чтобы перейти к специальным измерениям.
- 3. Чтобы начать измерение, выберите в меню или на сенсорном экране измерительный инструмент.

Инструменты измерения см. ниже в таблице раздела «8.3 Инструменты для гинекологических измерений».

Методы измерения см. в разделе «8.4 Выполнение гинекологических измерений» и описании этапов в разделе «3 Общие измерения».

4. Нажмите клавишу <Report> (Отчет), чтобы посмотреть отчет об исследовании (подробнее см. в разделе «8.5 Отчет о гинекологическом исследовании»).

8.3 Инструменты для гинекологических измерений

Система поддерживает следующие инструменты гинекологических измерений.

ПРИМЕЧАНИЕ: Упоминаемые ниже инструменты сконфигурированы в системе. Как правило, пакеты специальных измерений, предоставляемые системой, являются различными сочетаниями измерительных инструментов. Подробнее о предварительной установке пакетов см. в разделе «2.4.2.2 Предварительная установка специальных измерений».

Режимы	Типы	Инструменты	Описания	Методы или формулы	
		UTL	Длина тела матки	То же самое, что и при измерении длины	
		UT H	Высота тела матки		
		UT W	Ширина тела матки		
		L Шейк	Длина шейки матки		
		Н шейки	Высота шейки матки	отрезка в оощих измерениях в режиме 2D.	
		W Шейк	Ширина шейки матки		
	Измерение	Эндо	Толщина эндометрия		
		L яичн	Длина яичника		
		Н яичн	Высота яичника		
		W яичн	Ширина яичника	То же самое, что и при	
		Фоллик1~16 L	Длина фолликула 1~16	измерении длины отрезка в общих	
		Фоллик1~16 W	Ширина фолликула 1~16	измерениях в режиме 2D.	
2D		Фоллик1~16 Н	Высота фолликула 1~16		
		Vol.яичн	Объем яичника	См. ниже	
	Расчет	UT Vol	Объем тела матки		
		Тело матки	1		
		UT-L/CX-L	1		
		Фолликул 1-16	1		
		Матка	1	Измерение длины, высоты и ширины матки, а также толщины эндометрия	
	Исследование	Шейка матки	1	Измерение длины, высоты и ширины шейки матки	
		Яичн.	1	Измерение длины, высоты и ширины яичника	
		Фоллик1~16	1	Измерение длины, высоты и ширины фолликула 1~16	
М-режим	/		1		
Допплер	1		1		

8.4 Выполнение гинекологических измерений

Советы:	1.	Инструменты и методы измерения см. выше в таблице раздела «8.3 Инструменты для гинекологических измерений».
	2.	Определения измерения, расчета и исследования см. в разделе «1.3 Измерение, расчет и исследование».
	3.	Очередность измерений устанавливается предварительно (подробнее см. в разделе «2.4.2 Предварительная установка специальных измерений»).
	4.	Инструмент измерения можно активировать, выбрав пункт в меню измерения или на сенсорном экране, далее это описывается как «Выберите/нажмите(определённый пункт) в меню измерения».

8.4.1 Работа с инструментами измерений

Далее в качестве примера показано, как пользоваться инструментом «UT L». Измерения с помощью других инструментов аналогичны.

- 1. В меню измерения выберите пункт [UT L].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте длину матки.

8.4.2 Работа с инструментами вычислений

Vol.яичн

Назначение: измерение параметров «L яичн», «Н яичн» и «W яичн», расчет параметра «Vol.яичн».

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно.

- 1. В меню измерения выберите пункт [Vol.яичн].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L яичн», «Н яичн» и «W яичн». Параметр «Vol.яичн» рассчитается автоматически.

UT Vol

Назначение: измерение параметров «UT L», «UT H» и «UT W», расчет параметров «UT Vol» и «Тело матки».

- 1. В меню измерения выберите пункт [UT Vol].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «UT L», «UT H» и «UT W». Параметры «UT Vol» и «Тело матки» рассчитаются автоматически.

Тело матки

Назначение: измерение параметров «UT L», «UT H» и «UT W», расчет параметров «UT Vol» и «Тело матки».

Тело матки (см) = Д ТМ (см) + В ТМ (см) + Ш ТМ (см)

- 1. В меню измерения выберите пункт [Тело матки].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «UT L», «UT H» и «UT W». Параметры «UT Vol» и «Тело матки» рассчитаются автоматически.

UT-L/CX-L

Назначение: измерение параметров «UT L» и «L Шейк» и расчет их отношения «UT-L/CX-L». UT-L/CX-L (безразмерная величина) = UT L (см)/L Шейк (см)

- 1. В меню измерения выберите пункт [UT-L/CX-L].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «UT L» и «L Шейк». Система рассчитает параметр «UT-L/CX-L».

8.4.3 Работа с инструментами исследования

Матка

Назначение: измерение параметров «UT L», «UT H», «UT W» и «Эндо», расчет параметров «UT Vol», «Тело матки» и «UT-L/CX-L».

- 1. В меню измерения выберите пункт [Матка].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «UT L», «UT H», «UT W» и «Эндо».

Параметры «UT Vol» и «Тело матки» рассчитаются автоматически.

Если измерен параметр «L Шейк», система рассчитает также параметр «UT-L/CX-L».

Шейка матки

Назначение: измерение параметров «L Шейк», «Н шейки» и «W Шейк», вычисление параметра «UT-L/CX-L».

- 1. В меню измерения выберите пункт [Шейка матки].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L Шейк», «Н шейки» и «W Шейк».

Яичн.

Назначение: измерение параметров «L яичн», «Н яичн» и «W яичн», расчет параметра «Vol.яичн».

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно.

- 1. В меню измерения выберите пункт [Яичн.].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L яичн», «Н яичн» и «W яичн». Параметр «Vol.яичн» рассчитается автоматически.

Фоллик

Назначение: измерение длины, ширины и высоты фолликула с помощью метода «Отрезок» и расчет средней длины, ширины и высоты, а также объема фолликула.

Результаты	Метод	Формулы
Сродний визмотр	2 расстояния	Average Diam = $\frac{(Length + Width)}{2}$
Средний диаметр	3 расстояния	Average Diam = $\frac{(Length + Width + Height)}{3}$
	1 расстояние	$Vol = \frac{\pi}{6} (Length)^3$
Объем фолликула	2 расстояния	$Vol = \frac{\pi}{6} (Length)^2 \times Width$
	3 расстояния	$Vol = \frac{\pi}{6} length \times Width \times Height$

Можно измерять до 16 фолликулов. Прежде чем выполнять измерение фолликула, нужно указать последовательные номера фолликулов.

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно.

В качестве примера рассмотри фолликул 1. Измерения с помощью других инструментов аналогичны.

- 1. В меню измерения выберите пункт [Фоллик1].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «Фоллик1 L», «Фоллик1 W» и «Фоллик1 H».

Система автоматически рассчитает среднее значение «Фоллик1 L», «Фоллик1 W» и «Фоллик1 H», а также объем фолликула 1.

Методы расчета диаметра и объема фолликула можно предварительно задать на странице [Настр]-> [Предуст.сист.]-> [Приложение]

8.5 Отчет о гинекологическом исследовании

Во время или по окончании измерения нажмите клавишу <Report> (Отчет) на панели управления, чтобы просмотреть отчет.

Подробнее о просмотре, печати, экспорте и других операциях с отчетом см. в разделе «1.7 Отчет».

8.6 Литература

ТелоFeng Kui, Sun Yanling, Li Hezhou. Ultrasonic diagnosis of adenomyosisматки:(Ультразвуковая диагностика аденомиоза). Journal of Henan Medical
University, 1995; 30 (2).

UT-L/ CX-L: Ji Jindi, et al. Ultrasonographic study of the intersex problems and the internal genitalia abnormalities (Ультрасонографические исследования проблем интерсексуализма и внутренних аномалий половых органов). Journal of China medical ultrasound. 1996, Volume 12, No8 P40.

9 Урология

9.1 Подготовка урологического исследования

Прежде чем выполнять урологическое исследование, выполните следующие подготовительные процедуры:

- 1. Подтвердите правильность выбора текущего датчика.
- 2. Проверьте правильность текущей даты системы.
- Нажмите клавишу <Patient> (Пациент), зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [URO].

Подробнее см. в разделе «Подготовка к исследованию -> Сведения о пациенте» руководства оператора [Стандартные процедуры].

4. Переключитесь на подходящий режим обследования.

9.2 Основные процедуры урологических измерений

- 1. Нажмите клавишу <Patient> (Пациент), зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [URO].
- 2. Нажмите клавишу <Measure> (Измерить), чтобы перейти к специальным измерениям.
- 3. Чтобы начать измерение, выберите в меню или на сенсорном экране измерительный инструмент.

Инструменты измерения см. ниже в таблице раздела «9.3 Инструменты для урологических измерений».

Методы измерения см. в разделе «9.4 Выполнение урологических измерений» и описании этапов в разделе «3 Общие измерения».

4. Нажмите клавишу <Report> (Отчет), чтобы посмотреть отчет об исследовании (подробнее см. в разделе «9.5 Отчет об урологическом исследовании»).

9.3 Инструменты для урологических измерений

ПРИМЕЧАНИЕ: Упоминаемые ниже инструменты сконфигурированы в системе. Как правило, пакеты специальных измерений, предоставляемые системой, являются различными сочетаниями измерительных инструментов. Подробнее о предварительной установке пакетов см. в разделе «2.4.2.2 Предварительная установка специальных измерений».

Система поддерживает следующие измерения в режиме 2D (в М-режиме и допплеровском режиме инструментов измерения нет).

Типы	Инструменты Описания		Методы или формулы	
	L почки	Длина почки		
	Н почки	Высота почки	«Отрезок» в общих	
	W почки	Ширина почки		
Измерение	Кора	Кортикальная толщина почки		
	L надпоч.	Длина надпочечника	2D	
	Н надпоч.	Высота надпочечника		
	W надпоч.	Ширина надпочечника		
	L простат	Длина простаты		
	Н простат	Высота простаты		
	W простат	Ширина простаты		
	L семен	Длина семенного пузырька		
	Н семен	Высота семенного пузырька		
	W семен	Ширина семенного пузырька	«Отрезок» в общих	
	L яичка	Длина яичка	измерениях в режиме	
	Н яичка	Высота яичка	20	
	W яичка	Ширина яичка		
Измерение	Уретра	1		
измерение	Pre-BL L	Длина мочевого пузыря до опорожнения		
	Pre-BL H	Высота мочевого пузыря до опорожнения	«Отрезок» в общих измерениях в режиме	
	Pre-BL W	Ширина мочевого пузыря до опорожнения		
	Post-BL L	Длина мочевого пузыря после опорожнения		
	Post-BL H	Высота мочевого пузыря после опорожнения		
	Post-BL W	Ширина мочевого пузыря после опорожнения		
	Vol почки	Объем почки		
Расчет	Vol простат	Объем простаты	-	
	Vol яичка	Объем яичка		
	Pre-BL Vol	Объем мочевого пузыря до опорожнения	См. ниже	
	Post-BL Vol	Объем мочевого пузыря после опорожнения		
	Об.мочи	Объем мочеиспускания		
Типы	Инструменты	Описания	Методы или формулы	
--------------	-------------	----------	--------------------	--
Исследование	Почка	1	См. ниже	
	Надпоч.	1		
	Простата	1		
	Семен.пузыр	1		
	Яичко	1		
	Пузырь	1		

9.4 Выполнение урологических измерений

Советы:	1.	Инструменты и методы измерения см. выше в таблице раздела «9.3 Инструменты для урологических измерений».
	2.	Определения измерения, расчета и исследования см. в разделе «1.3 Измерение, расчет и исследование».
	3.	Очередность измерений устанавливается предварительно (подробнее см. в разделе «2.4.2 Предварительная установка специальных измерений»).
	4.	Инструмент измерения можно активировать, выбрав пункт в меню измерения или на сенсорном экране, далее это описывается как «Выберите/нажмите (определённый пункт) в меню измерения».

9.4.1 Работа с инструментами измерений

Порядок работы со всеми инструментами урологических измерений тот же, что и в общих измерениях режима 2D.

Следующие инструменты предназначены для измерения левой или правой стороны, соответственно:

L семен	Н семен	W семен	L почки
Н почки	W почки	Кора	L надпоч.
Н надпоч.	W надпоч.	L яичка	Н яичка

W яичка

Порядок измерения показан ниже на примере инструмента «L простат»:

- 1. В меню измерения выберите пункт [L простат].
- 2. С помощью метода измерения «Отрезок» общих измерений в режиме 2D измерьте длину простаты.

9.4.2 Работа с инструментами вычислений

Vol почки

Назначение: измерение параметров «L почки», «Н почки» и «W почки», расчет параметра «Vol почки».

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно.

- 1. В меню измерения выберите пункт [Vol почки].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L почки», «Н почки» и «W почки». Параметр «Vol почки» рассчитается автоматически.

Vol простат

Назначение: измерение параметров «L простат», «Н простат» и «W простат», расчет параметров «Vol простат» и PPSA. Кроме того, если значение параметра [сывор PSA] введено в окне [Инф.пациента] -> [URO], то будет вычислено значение параметра PSAD (плотность простат-специфического антигена).

PPSA (нг/мл) = Коэфф. PPSA (нг/мл²) × Vol простат (мл)

PSAD (нг/мл²) = сывор PSA (нг/мл)/Vol простат (мл)

Значения «Коэфф. PPSA» и «сывор PSA» вводятся в диалоговом окне [Инф.пациента] -> [URO]. Значение по умолчанию «Коэфф. PPSA» — 0,12.

- 1. В меню измерения выберите пункт [Vol простат].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L простат», «Н простат» и «W простат».

Система рассчитает параметры «Vol простат» и «PPSA».

Если введено значение «PSA», то в отчете отображается «PSAD».

Vol яичка

Назначение: измерение параметров «L яичка», «Н яичка» и «W яичка», расчет параметра «Vol яичка».

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно.

- 1. В меню измерения выберите пункт [Vol яичка].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L яичка», «Н яичка» и «W яичка». Параметр «Vol яичка» рассчитается автоматически.

Pre-BL Vol

Назначение: измерение параметров «Pre-BL L», «Pre-BL H» и «Pre-BL W», расчет параметра «Pre-BL Vol».

- 1. В меню измерения выберите пункт [Pre-BL Vol].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «Pre-BL L», «Pre-BL H» и «Pre-BL W». Параметр «Pre-BL Vol» рассчитается автоматически. Если измерен параметр «Post-BL Vol», то в отчете отображается «Об.мочи».

Post-BL Vol

Назначение: измерение параметров «Post-BL L», «Post-BL H» и «Post-BL W», расчет параметра «Post-BL Vol».

- 1. В меню измерения выберите пункт [Post-BL Vol].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «Post-BL L», «Post-BL H» и «Post-BL W». Параметр «Post-BL Vol» рассчитается автоматически. Если измерен параметр «Pre-BL Vol», то в отчете отображается «Об.мочи».

Об.мочи

Назначение: измерение параметров «Pre-BL Vol» и «Post-BL Vol», расчет параметра «Об.мочи».

- 1. В меню измерения выберите пункт [«Об.мочи»].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «Pre-BL L», «Pre-BL H» и «Pre-BL W». Параметр «Pre-BL Vol» рассчитается автоматически.
- 3. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «Post-BL L», «Post-BL H» и «Post-BL W». Параметры «Post-BL Vol» и «Об.мочи» рассчитаются автоматически.

9.4.3 Работа с инструментами исследования

Почка

Назначение: измерение параметров «L почки», «Н почки» и «W почки», расчет параметра «Vol почки».

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно.

- 1. В меню измерения выберите пункт [Почка].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L почки», «Н почки» и «W почки». Параметр «Vol почки» рассчитается автоматически.
- 3. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте параметр «Кора».

Надпоч.

Назначение: измерение параметров «L надпоч.», «Н надпоч.» и «W надпоч.».

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно.

- 1. В меню измерения выберите пункт [Надпоч.].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L надпоч.», «Н надпоч.» и «W надпоч.».

Простата

Назначение: измерение параметров «L простат», «Н простат» и «W простат», расчет параметров «Vol простат» и PPSA. Кроме того, если значение параметра [сывор PSA] введено в окне [Инф.пациента] -> [URO], то будет вычислено значение параметра PSAD (плотность простат-специфического антигена).

PPSA (нг/мл) = Коэфф. PPSA (нг/м n^2) × Vol простат (мл)

PSAD (Hr/Mn^2) = сывор PSA (Hr/Mn)/Vol простат (Mn)

Значения «Коэфф. PPSA» и «сывор PSA» вводятся в диалоговом окне [Инф.пациента] -> [URO]. Значение по умолчанию «Коэфф. PPSA» — 0,12.

- 1. В меню измерения выберите пункт [Простата].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L простат», «Н простат» и «W простат».

Система рассчитает параметры «Vol простат» и «PPSA».

Если введено значение «PSA», то в отчете отображается «PSAD».

Семен.пузыр

Назначение: измерение параметров «L семен», «Н семен» и «W семен».

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно.

- 1. В меню измерения выберите пункт [Семен.пузыр].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L семен», «Н семен» и «W семен».

Яичко

Назначение: измерение параметров «L яичка», «Н яичка» и «W яичка», расчет параметра «Vol яичка».

ПРИМЕЧАНИЕ: Измерение нужно проводить на левой и правой стороне, соответственно.

- 1. В меню измерения выберите пункт [Яичко].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L яичка», «Н яичка» и «W яичка». Параметр «Vol яичка» рассчитается автоматически.

Пузырь

Назначение: измерение параметров «Pre-BL L», «Pre-BL H», «Pre-BL W», «Post-BL L», «Post-BL H» и «Post-BL W», расчет параметров «Pre-BL Vol», «Post-BL Vol» и «Об.мочи».

- 1. В меню измерения выберите пункт [Пузырь].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «Pre-BL L», «Pre-BL H» и «Pre-BL W». Параметр «Pre-BL Vol» рассчитается автоматически.
- 3. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «Post-BL L», «Post-BL H» и «Post-BL W». Параметры «Post-BL Vol» и «Об.мочи» рассчитаются автоматически.

9.5 Отчет об урологическом исследовании

Во время или по окончании измерения нажмите клавишу <Report> (Отчет) на панели управления, чтобы просмотреть отчет.

Подробнее о просмотре, печати, экспорте и других операциях с отчетом см. в разделе «1.7 Отчет».

9.6 Литература

- **PPSA:** Peter J. Littrup MD, Fed LeE. MD, Curtis Mettin. PD.Prostate Cancer Screening: Current Trends and Future Implications (Скрининг рака предстательной железы: текущие тренды и будущие тенденции). CA-A CANCER JOURNAL FOR CLINICIANS, Jul/Aug 1992, Vol.42, No.4.
- **PSAD:** MITCHELL C. BENSON, IHN SEONG, CARL A. OLSSON, J, McMahon, WILLIAM H.COONER. The Use of Prostate Specific Antigen Density to Enhance the Predictive Value of the Intermediate Levels of Serum Prostate Specific Antigen (Применение показателя плотности простат-специфического антигена для усиления прогностической значимости промежуточных уровней сывороточного простат-специфического антигена). THE JOURNAL OF UROLOGY, 1992, Vol.147, p. 817-821.

10 Мал.част

10.1 Подготовка исследования малых органов

Прежде чем выполнять измерение, выполните следующие подготовительные процедуры:

- 1. Подтвердите правильность выбора текущего датчика.
- 2. Проверьте правильность текущей даты системы.
- 3. Нажмите клавишу <Patient> (Пациент), зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [SMP].

Подробнее см. в разделе «Подготовка к исследованию -> Сведения о пациенте» руководства оператора [Стандартные процедуры].

4. Переключитесь на подходящий режим обследования.

10.2 Основные процедуры измерения малых органов

- 1. Нажмите клавишу <Patient> (Пациент), зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [SMP].
- 2. Нажмите клавишу <Measure> (Измерить), чтобы перейти к специальным измерениям.
- 3. Чтобы начать измерение, выберите в меню или на сенсорном экране измерительный инструмент.

Инструменты измерения см. ниже в таблице раздела «10.3 Инструменты для измерения малых органов».

Методы измерения см. в разделе «10.4 Выполнение измерений малых органов» и описании этапов в разделе «3 Общие измерения».

4. Нажмите клавишу <Report> (Отчет), чтобы посмотреть отчет об исследовании (подробнее см. в разделе «10.5 Отчет об исследовании малых органов»).

10.3 Инструменты для измерения малых органов

Система поддерживает следующие инструменты для измерения малых органов.

ПРИМЕЧАНИЕ: Упоминаемые ниже инструменты сконфигурированы в системе. Как правило, пакеты специальных измерений, предоставляемые системой, являются различными сочетаниями измерительных инструментов. Подробнее о предварительной установке пакетов см. в разделе «2.4.2.2 Предварительная установка специальных измерений».

Режимы	Типы	Инструменты	Описания	Методы или формулы	
		L щ/ж	Длина щитовидной железы		
		Нщ/ж	Высота щитовидной железы		
		W щ/ж	Ширина щитовидной железы	«Отрезок» в общих измерениях в режиме 2D	
		Н перешейка	Высота перешейка		
	Измерение	L яичка	Длина яичка		
		Н яичка	Высота яичка		
		W яичка	Ширина яичка		
		Опухоль1~5 L	Длина опухоли		
2D		Опухоль1~5 W	Ширина опухоли		
		Опухоль1~5 Н	Высота опухоли	«Отрезок» в общих измерениях в режиме 2D	
		Сосок- опухоль1~5	Расстояние между соском и опухолью		
		Кожа- опухоль1~5	Расстояние между кожей и опухолью		
	Расчет Об щ/ж		Объем щитовидной железы	Vol щ/ж (см ³) = k × L щ/ж (см) × H щ/ж (см) × W щ/ж (см) Где: k= 0,479 или 0,523	
		Щит.жел	1	Те же формулы, что и для расчета «Vol щ/ж»	
	Исследование	Яичко	1	См. раздел «Яичко».	
		Опухоль1~5	1	«Объем (ЗОтр.)» в обычных измерениях в режиме 2D	
М-режим	/	/	1	1	
Допплер	Измороцио	STA	Верхняя щитовидная артерия	«Д конт.» в общих	
	изморение	ITA	Нижняя щитовидная артерия	измерениях	
	Расчет	1	1	1	
	Исследование	1	1	/	

10.4 Выполнение измерений малых органов

Советы: 1. Инструменты и методы измерения см. выше в таблице раздела «10.3 Инструменты для измерения малых органов».

- 2. Определения измерения, расчета и исследования см. в разделе «1.3 Измерение, расчет и исследование».
- 3. Очередность измерений устанавливается предварительно (подробнее см. в разделе «2.4.2 Предварительная установка специальных измерений»).
- Инструмент измерения можно активировать, выбрав пункт в меню измерения или на сенсорном экране, далее это описывается как «Выберите/нажмите ... (определённый пункт) в меню измерения».

10.4.1 Работа с инструментами измерений

В качестве примера рассмотрим инструмент «L щ/ж». Процедуры измерения следующие:

- 1. В меню измерения выберите пункт [L щ/ж].
- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L щ/ж». Значение отобразится в окне результатов и отчете об исследовании.

10.4.2 Работа с инструментами вычислений

Об щ/ж

Назначение: измерение параметров «L щ/ж», «Н щ/ж» и «W щ/ж», соответственно, и расчет параметра «Vol щ/ж».

Советы: Измерение нужно проводить на левой и правой стороне, соответственно.

1. В меню измерения выберите пункт [Vol щ/ж].

2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L щ/ж», «Н щ/ж» и «W щ/ж».

Автоматически рассчитаются два значения «Vol щ/ж».

10.4.3 Работа с инструментами исследования

Щит.жел

Назначение: измерение параметров «L щ/ж», «Н щ/ж» и «W щ/ж», соответственно, и расчет параметра «Vol щ/ж». Формулы расчета см. в разделе «10.3 Инструменты для измерения малых органов».

Советы: Измерение нужно проводить на левой и правой стороне, соответственно.

1. В меню измерения выберите пункт [Щит.жел].

2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте «L щ/ж», «Н щ/ж» и «W щ/ж». Параметры «Vol щ/ж» рассчитается автоматически.

Опухоль

Назначение: Измерение длины, ширины и высоты опухоли для оценки её объёма, а также измерение расстояния от соска до опухоли и от кожи до опухоли. Можно измерять до 5 опухолей.

В качестве примера рассмотрим опухоль 1. Процедуры измерения следующие:

1. В меню измерения выберите пункт [Опухоль 1].

Поверните ручку под пунктом [Положение] на сенсорном экране, чтобы записать положение опухоли.

Поверните ручку под пунктом [Стор.] на сенсорном экране, чтобы записать сторону опухоли.

- 2. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте значения «Опухоль1 L», «Опухоль1 W» и «Опухоль1 H».
- 3. С помощью метода «Отрезок» общих измерений в режиме 2D измерьте расстояния «Сосок-опухоль» и «Кожа-опухоль».

Измерения и рассчитанный объем массы записываются в отчете.

Яичко

То же самое, что и «Яичко» в разделе «9 Урология».

10.5 Отчет об исследовании малых органов

Во время или по окончании измерения нажмите клавишу <Report> (Отчет) на панели управления, чтобы просмотреть отчет.

Подробнее о просмотре, печати, экспорте и других операциях с отчетом см. в разделе «1.7 Отчет».

10.6 Литература

Об щ/ж:Volumetrie der Schilddruesenlappn mittels Realtime-Sonographie (Волюметрия
доли щитовидной железы с помощью сонографии в режиме реального
времени); J Brunn, U. Block, G. Ruf, et al.; Dtsch.med. Wschr.106 (1981),
1338-1340.

Об щ/ж: (k=0,523) Gomez JM, Gomea N, et al. Determinants of thyroid volume as measured by ultrasonography in healthy adults randomly selected (Детерминанты объема щитовидной железы при измерении методом ультразвуковой эхографии у здоровых взрослых людей, отобранных случайным образом). Clin Endocrinol(Oxf), 2000;53:629-634

11 Ортопедия

В педиатрической ортопедии используется измерение HIP (Угол тазобедренного сустава). Такие измерения позволяют выполнять раннюю диагностику дисплазии тазобедренного сустава у младенцев.

11.1 Подготовка ортопедического исследования

Прежде чем выполнять измерение, выполните следующие подготовительные процедуры:

- 1. Подтвердите правильность выбора текущего датчика.
- 2. Проверьте правильность текущей даты системы.
- Зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [ДЕТ]. Подробнее см. в разделе «Подготовка к исследованию -> Сведения о пациенте» руководства оператора [Стандартные процедуры].
- 4. Переключитесь на подходящий режим обследования.

11.2 Основные процедуры ортопедических измерений

- 1. Зарегистрируйте пациента, введя его данные в диалоговом окне [Инф.пациента] -> [ДЕТ].
- 2. Нажмите клавишу <Measure> (Измерить), чтобы перейти к специальным измерениям.
- 3. Чтобы начать измерение, выберите в меню или на сенсорном экране измерительный инструмент.
- 4. Инструменты измерения см. ниже в таблице раздела «11.3 Инструменты ортопедических измерений».
- 5. Методы измерения см. в разделе «11.4 Выполнение измерений тазобедренного сустава» и описании этапов в разделе «3 Общие измерения».
- 6. Нажмите клавишу <Report> (Отчет), чтобы посмотреть отчет об исследовании (подробнее см. в разделе «11.5 Отчет об ортопедическом исследовании»).

11.3 Инструменты ортопедических измерений

ПРИМЕЧАНИЕ: Упоминаемые ниже инструменты сконфигурированы в системе. Как правило, пакеты специальных измерений, предоставляемые системой, являются различными сочетаниями измерительных инструментов. Подробнее о предварительной установке пакетов см. в разделе «2.4.2.2 Предварительная установка специальных измерений».

HIP

Расчет HIP помогает оценить развитие тазобедренного сустава младенца. В ходе вычисления на изображение накладываются три прямые линии, которые совмещаются с анатомическими ориентирами. Вычисляются и отображаются два угла.

Эти три линии следующие:

- Базовая линия (БЛ), соединяющая костный бугорок вертлужной впадины с точкой соединения суставной капсулы и перихондрия с подвздошной костью.
- Верхняя линия (ВЛ), соединяющая нижний край подвздошной кости с костным бугорком вертлужной впадины.
- Наклонная линия (НЛ), соединяющая костный бугорок вертлужной впадины с каймой вертлужной впадины.

Измеряются следующие углы:

- а: угол между БЛ и ВЛ.
- β: угол между БЛ и НЛ

Тип дисплазии может быть определен графическим методом, как описано в следующей таблице.

тип		DESVOLTAT			
дисплазии	α β Patient		Patient	FESTIDIAI	
I	α≥60°	β<77°	Любой возраст	I	
II	50°≤α≤59°		Возраст менее трех месяцев	lla	
	50°≤α≤59°	β<55°	Возраст три месяца или старше	llb	
	43°≤α≤49°	β≤77°	Любой возраст	llc	
	43°≤α≤49°	β>77°	Любой возраст	lld	
111	α<43°	β>77°	Любой возраст	111	
IV	Количественное измерение угла невозможно.		Любой возраст	Все	
	Другие	Другие	Любой возраст	?????	

HIP-Graf

Инструменты измерения, результаты и процедуры те же, что и для «HIP».

d/D

Измерение расстояния между базовой и нижней линией костной вертлужной впадины и максимальной шириной бедер для оценки покрытия вертлужной впадины тазобедренными костями.

- 1. Выберите [d/D] в меню измерения.
- С помощью метода «Отрезок» общих измерений в режиме 2D измерьте максимальную ширину бедра (D) и расстояние между крышей и дном вертлужной впадины (d). Система вычислит d/D.

11.4 Выполнение измерений тазобедренного сустава

Советы: 1. Определения измерения, расчета и исследования см. в разделе «1.3 Измерение, расчет и исследование».

- Инструмент измерения можно активировать, выбрав пункт в меню измерения или на сенсорном экране, далее это описывается как «Выберите/нажмите ... (определённый пункт) в меню измерения».
- 1. В меню измерений В-режима выберите пункт [HIP].

Появится линия с точкой опоры.

- 2. С помощью трекбола переместите линию к тазобедренному суставу. Затем поверните ручку <Angle>, чтобы зафиксировать базовую линию.
- 3. Нажмите клавишу <Set> (Установить), чтобы подтвердить линию, и на экране появится вторая линия.
- 4. Тем же способом, что и для первой линии, отрегулируйте и зафиксируйте линию ВЛ, нажав клавишу <Set> (Установить).
- Тем же способом зафиксируйте третью линию НЛ. Появятся также углы α и β. Если введен возраст пациента, то отобразится и тип дисплазии. Измерьте отдельно углы α и β: для измерения нажмите [HIP (α)] или [HIP (β)].

11.5 Отчет об ортопедическом исследовании

Во время или по окончании измерения нажмите клавишу <Report> (Отчет) на панели управления, чтобы просмотреть отчет.

Подробнее о просмотре, печати, экспорте и других операциях с отчетом см. в разделе «1.7 Отчет».

11.6 Литература

Graf R. Sonographic diagnosis of hip dysplasia. Principles, sources of error and consequences (Сонографическая диагностика дисплазии тазобедренного сустава. Принципы, источники ошибок и последствия), Ultraschall Med. 1987 Feb;8(1):2-8

Schuler P., Principles of sonographic examination of the hip (Принципы сонографического исследования таза), Ultraschall Med. 1987 Feb;8(1):9-1

Graf, R. Fundamentals of Sonographic Diagnosis of Infant Hop Dysplasia (Основы диагностики дисплазии тазобедренного сустава методом сонографии). Journal Pediatric Orthopedics, Vol. 4, No. 6:735-740,1984.

Graf, R. Guide to Sonography of the Infant Hip. (Руководство по сонографии тазобедренного сустава у младенцев). Georg Thieme Verlag, Stuttgart and New York, 1987.

Morin, C., Harcke, H., MacEwen, G. The Infant Hip: Real-Time US Assessment of Acetabular Development (Тазобедренный сустав у детей: оценка развития вертлужной области ультразвуковым методом в масштабе реального времени). Radiology, 177:673-677, December 1985.

12 Экстренная медпомощь

На данный момент в системе предусмотрены следующие режимы неотложного исследования:

- EM ABD
- EM FAST
- EM OB
- ЕМ сосудис.
- ЕМ поверхност.

12.1 Основные процедуры измерения

- 1. Нажмите клавишу <Patient> (Пациент), и зарегистрируйте пациента, введя его данные на соответствующей странице экрана [Инф.пациента].
- 2. Выполните ультразвуковое сканирование в требуемых проекциях и сохраните изображения.
- 3. Нажмите клавишу <Measure> (Измерить), чтобы перейти к специальным измерениям.
- 4. Чтобы начать измерение, выберите соответствующий пункт/инструмент.
- 5. Нажмите клавишу < Report> (Отчет), чтобы посмотреть итоговый отчет об измерениях.

12.2 Инструменты измерения для неотложной медицинской помощи (EM)

Наиболее часто используемые инструменты измерения содержатся в пакете EM, соответствующем каждому режиму исследования EM.

ПРИМЕЧАНИЕ:	1.	Состав инструментов измерения в каждом пакете EM зависит от конкретных данных измерений, предварительно установленных для каждой ультразвуковой системы.
	2.	Подробные описания инструментов измерения см. в главе соответствующего приложения.
	3.	Подробнее о предварительной установке пакетов см. в разделе «2.4.2.2 Предварительная установка специальных измерений».

12.3 Отчет об исследовании ЕМ

Во время или по окончании измерения нажмите клавишу <Report> (Отчет) на панели управления, чтобы просмотреть отчет.

У каждого режима исследования EM соответствующий отчет EM. Как и в других отчета, в отчете EM доступны следующие функции:

- Выбор анатомического диагноза
- Редактирование данных отчета и добавление примечаний
- Добавление и удаление ультразвуковых изображений
- Изменение типа отчёта
- Печать и предварительный просмотр отчета
- Экспорт отчета

Подробнее о просмотре, печати, экспорте и других операциях с отчетом см. в разделе «1.7 Отчет».

Appendix A Единица измерения

Единицы измерения для разных инструментов приведены в таблице ниже.

Измерения	Единицы измерения	Диапазон		Примечания
	ММ	0.0	9999.9	
длина (плубина, расстояние,	СМ	0.00	999.99	
окружность, длина	дюйм	0.0	9999.9	
окружности)	фут	0.00	999.99	
Угол	o	-180	180	Регулиовка угла «Цвет.скор» в диапазоне от 0 до 90°
Плошаль	MM ²	0	99999	
площадь	CM ²	0.00	999.99	
	MM ³	0.0	99999	
	CM ³	0.00	9999.99	
OOBEM	мл	0.0	9999.9	
	л	0.0	99.99	
Отношение (%)	%	0.0	999.9	
Отношение	Безразмерная величина	0.00	99.99	
Boong	мс	0	99999	
ремя	С	0.000	99.999	
Частота сердечных сокращений	уд./мин	0	999	
Наклон	мм/с	0.0	999.9	
Паклон	см/с	0.00	99.99	
	мм/с	-99999.9	99999.9	
Скорость	см/с	-9999.9	9999.9	
	м/с	-99.99	99.99	
	мм/c ²	0.0	9999	
Ускорение	см/с ²	0.00	999.9	
	м/c ²	0.00	99.9	
Индекс		0.00	99.99	
Индекс массы левого желудочка		0.0	999.9	
	кг	0.0	999.9	
Bec	фунты	0	999	
	унции	0	9999	

Измерения	Единицы измерения	Диапазон		Примечания
Рост	СМ	0.0	999.9	
Площадь поверхности тела (BSA):	M ²	0.00	99.99	
Масса	г	0.0	9999.9	
Плотность	ρ	0.00	99.99	
Поток	л/мин	0.000	99.999	
	г	0	9999	
TIDI I,	фунты	0.0	999.9	
SI	мл/ м²	0.0	999.9	
CI		0.0	99.99	
SPSA	нг/мл	0.01	100	
MVCF	цирк./с	0.0	99.99	